BAC BLANC

UP Adjamé 3

Durée : 4 heures

Coefficient : 4

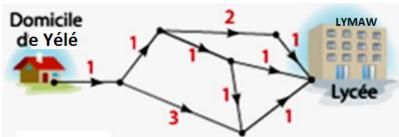
SÉRIE: D

MATHÉMATIQUES

Ce sujet comporte deux pages numérotées 1/2 et 2/2. Toute calculatrice est autorisée.

Exercice 1

Pour se rendre au lycée de Williamsville, Yélé une élève de la terminale D2, peut emprunter l'un des chemins schématisé ci – dessous. Les distances indiquées sur les segments de chemin sont exprimées en centaines de mètres



Chaque matin, Yélé tire au hasard le chemin qu'elle empruntera. X est la variable aléatoire qui donne la longueur du chemin emprunté.

Partie 1

- 1. Détermine les valeurs de X à partir des 4 chemins qu'elle peut emprunter
- 2. Détermine la loi de probabilité de X
- 3. Calcule son espérance mathématiques E (X) et son écart type $\sigma(X)$
- 4. Yélé se déplace à vélo à une vitesse v = 1,425 km. h^{-1} . A quel instant au plus tard doit elle quitter son domicile pour s'assurer d'être à l'heure au cours de 7 h 30 mn ?

Partie 2

Dans la semaine, Yélé a cours lundi, mardi, jeudi et vendredi.

- 1. Calcule la probabilité quelle parcours 1.7 km durant 3 jours
- 2. Y est la variable aléatoire égale au nombre de fois qu'elle emprunte le chemin le plus court.
 - a. Donne la loi de probabilité de Y
 - b. Combien de fois en moyenne emprunte t elle un plus court chemin?
 - c. Déduis-en la longueur moyenne parcourue par semaine pour se rendre au lycée.

Exercice 2

- 1. Justifie que $a = \sqrt{3} + i$ et $m = \sqrt{3} i$ sont les solutions de l'équation $z^2 2\sqrt{3}z + 4 = 0$
- 2. Ecris a et m sous forme exponentielle
- 3. A et M sont deux points d'affixes respectives a et m
 - a. Place A et M dans un repère (O; u, v) du plan complexe (unité 2 cm)
 - b. B et C sont deux points d'affixes respectives b = a i et c = bi. Calcule b et c sous forme algébrique.
 - c. Place B et C dans le repère (O; u, v)
 - d. Démontre que le triangle ABC est rectangle et isocèle
 - e. Détermine l'affixe d du point D tel que ABCD soit un carré puis place D.

PROBLEME

Partie A

On considère la fonction g définie sur]0; $+\infty[$ par $g(x) = -1 + x(lnx)^2$

- 1) Calculer la limite de g en $+\infty$ et justifier que -1 est la limite de g en 0.
- 2) a) Démontrer que $\forall x \in]0; +\infty[,g'(x)=(2+lnx)lnx.$
 - b) Etudier le sens de variation de g et dresser son tableau de variation
- 3) a) Démontrer que l'équation g(x) = 0 admet une unique solution α sur 0; $+\infty$ [et 2,02< α < 2,03
 - b) Démontrer que $\forall x \in]0$; $\alpha[, g(x) < 0 \text{ et} \forall x \in]\alpha; +\infty[, g(x) > 0.$

Partie B

Soit la fonction
$$f$$
 de \mathbb{R} $vers$ \mathbb{R} définie par :
$$\begin{cases} f(x) = 1 + \frac{1}{\ln x} + x \\ f(0) = 1 \end{cases}$$

Et (C_f) sa courbe représentative dans le plan muni du repère orthonormé (O, I, J) d'unité graphique 2 cm

- 1) Justifier que l'ensemble de définition de f est $[0,1[\ \cup\]1\ ; +\infty[.$
- 2) Etudier la continuité de f en 0.
- 3) a) Calculer les limites de f à gauche et à droite en 1.Interpréter graphiquement le résultat.
 - b) Calculer la limite de f en +∞.
- 4) Etudier la dérivabilité de f en 0 et préciser une équation du support de la demi-tangente à (C_f) au point d'abscisse 0.
 - 5) a) Justifier que $\forall x \in]0$; $+\infty[\setminus\{1\}f'(x) = \frac{g(x)}{x(\ln x)^2}$
 - b) En déduire les variations de f, puis dresser son tableau de variation.
 - c) Interpréter graphiquement la valeur de $f'(\alpha)$.
 - 6) a) Démontrer que $f(\alpha) = (\sqrt{\alpha} + \frac{1}{2})^2 + \frac{3}{4}$
 - b) En déduire que 4,45 une valeur approché de $f(\alpha)$ à 2×10^{-2} prés.
 - 7) a) Démontrer que la droite (D) d'équation y=x+1 est une asymptote à (C_f).
 - b) Etudier la position relative de (C_f) par rapport à (D).
 - 8) Construire (D) et (C_f).

Partie C

Soit h la restriction de f à $[\alpha; +\infty[$.

- 1) Démontrer que h est une bijection de $[\alpha; +\infty[$ dans un intervalle K que l'on précisera.
- 2) On désigne par h^{-1} la bijection réciproque de h et par $(C_{h^{-1}})$ sa courbe représentative.
 - a) Calculer $h^{-1}(2+e)$ puis $(h^{-1})'(2+e)$.
 - b) h^{-1} est-elle dérivable en $h(\alpha)$? Justifier la réponse.
 - c) Préciser une équation de la tangente à $(C_{h^{-1}})$ au point d'abscisse $h(\alpha)$.
 - d) Dresser le tableau de variation de h^{-1}
- 3) Tracer ($\mathcal{C}_{h^{-1}}$) dans le même repère que (\mathcal{C}_{h})