Niveau: 3ème

Année Scolaire: 2019-2020

Durée: ... Heures

EXERCICE I 2 points

Pour chaque ligne du tableau, une seule affirmation est exacte. Ecris sur ta copie le numéro de la ligne suivie de la lettre qui correspond à la bonne réponse choisie.

	AFFIRMATIONS	A	В	С
1	Le nombre $2\sqrt{3} - 4$ est	Négatif	Positif	Nul
2	Pour tout nombre décimal relatif a et pour tout entier relatif $n \frac{1}{a^{-n}}$ est égale à	a^{-n}	a^n	$-a^n$
3	La fraction rationnelle $\frac{x+3}{(x-1)(x+2)}$ existe si et seulement si	$x \neq 1$ ou $x \neq -2$	$x \neq 1$ et $x \neq -2$	$x \neq -1$ ou $x \neq 2$
4	$(2-\sqrt{3})^2$ est égale à :	$4\sqrt{3}-7$	$7+4\sqrt{3}$	$7-4\sqrt{3}$

EXERCICE II 2 points

Réordonne les groupes de mots suivants pour obtenir une propriété exacte.

1- de l'angle au centre associé

2- a pour mesure

3- la moitié de la mesure

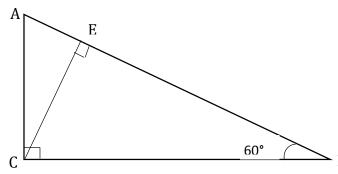
4- Un angle inscrit dans un cercle

EXERCICE III 4 points

On donne le nombre $A = \sqrt{29 - 12\sqrt{5}}$

- 1. a) Compare 3 et $2\sqrt{5}$.
 - b) En déduire le signe de $3 2\sqrt{5}$.
- 2. a) Justifier que $(3 2\sqrt{5})^2 = 29 12\sqrt{5}$
 - b) Ecrire plus simplement A.
- 3) Sachant que 2,236 $<\sqrt{5}<$ 2,237, Encadrer le nombre 3 $2\sqrt{5}$ par deux décimaux consécutifs d'ordre 1.

EXERCICE IV 3 points



L'unité de longueur est le centimètre (cm). On considère la figure ci-contre qui n'est pas en vrai grandeurs réelles.

On donne BC = 4.5; $\cos 60^{\circ} = \frac{1}{2}$ et

Sin $60^{\circ} = \frac{\sqrt{3}}{2}$. mes $\widehat{CAB} = 60^{\circ}$.

- 1) Détermine les valeurs de Cos BAC et Sin BAC. Justifier
- 2. a) Justifie que AB = 9.
 - b) Détermine la longueur de AC.
- 3) Calcule EC.

EXERCICE V 5 points

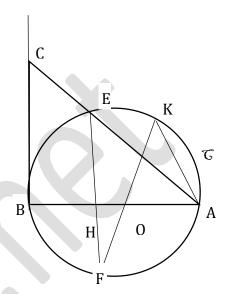
L'unité de longueur est le centimètre (cm).

Sur la figure ci-contre qui n'est pas en vrai grandeur

- \mathbb{C} est un cercle de centre O et le diamètre [AB]
- E est le point de \mathcal{T}
- La hauteur du triangle ABE issue de E coupe(AB) en H et \mathcal{T} en F.
- Le triangle *ABC* est rectangle en B.
- K est diametrement opposé à F.

On donne AB = 8, BC = 6 et AC = 10.

- 1. a) Justifie que le triangle ABE est rectangle en E.
 - b) Démontre que AE = 6,4.
- 2. a) Justifie que les droites (BC) et (HE) sont parallèles.
 - b) Calcule HE.
- 3) Justifie que mes $\widehat{FEA} = mes \widehat{FKA}$.



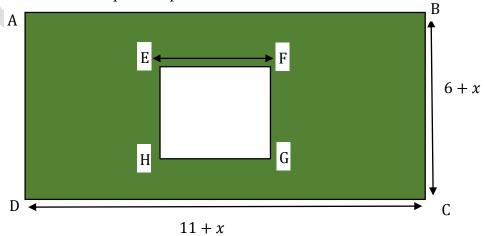
EXERCICE VI 4 points.

Dans la commune de Cocody, le maire veut aménager un espace rectangulaire de largeur (6 + x)m et de longueur (11 + x)m.

Le plan d'aménagement prévoit de disposer au centre de cet espace, et parallèlement aux bords du rectangle un bassin carré de (8-x)m de côté. Tout le reste de l'espace sera semé de gazon.

En visite sur le site, des élèves de 3^è décident de déterminer l'aire de l'espace gazonné.

- 1) Justifier que l'aire A_1 de l'espace rectangulaire en fonction de x est $x^2 + 17x + 66$.
- 2) Montrer que l'aire A_2 du bassin est $x^2 16x + 64$
- 3. a) Calcule en fonction de x l'aire A de la partie gazonnée.
 - b) Donne la valeur numérique de A pour x = 4



BAREME DE MATHEMATIQUE

EXERCICE I (2 points)

1. A
$$(0.5 pt)$$

EXERCICE II (2 points)

Bon ordre (2 pts)

EXERCICE III (4 points)

1. a) 3 <
$$2\sqrt{5}$$
 (0,75 pt)

b)
$$3 - 2\sqrt{5} < 0$$
 négatif (0,5 pt)

2. a)
$$(3 - 2\sqrt{5})^2 = 29 - 12\sqrt{5}$$
 (0,75 pt)

b)
$$A = \sqrt{29 - 12\sqrt{5}}$$

= $\sqrt{(3 - 2\sqrt{5})^2}$
= $|3 - 2\sqrt{5}|$ or $3 - 2\sqrt{5} < 0$

Donc
$$A = 2\sqrt{5} - 3$$
 (1 pt)

3)
$$2 \times 2,236 < 2\sqrt{5} < 2 \times 2,237$$

 $-2 \times 2,237 < -2\sqrt{5} < -2 \times 2,236$ (0,5 pt)

$$3 - 2 \times 2,237 < 3 - 2\sqrt{5} < 3 - 2 \times 2,236$$

$$-1,474 < 3 - 2\sqrt{5} < -1,472$$

$$-1,5 < 3 - 2\sqrt{5} < -1,4$$
(0,5 pt)

EXERCICE IV (3 points)

1) \widehat{BAC} et \widehat{ABC} sont deux angles complémentaires. (0,25 pt)

Donc
$$\widehat{BAC} = Sin \widehat{ABC} = \frac{\sqrt{3}}{2}$$
. (0,25 pt)
 $Sin \widehat{BAC} = Cos \widehat{ABC} = \frac{1}{2}$. (0,25 pt)

2. a)
$$Cos \widehat{ABC} = \frac{BC}{AB} Donc AB = \frac{BC}{Cos \widehat{ABC}}$$

$$AB = \frac{4.5}{\frac{1}{2}}$$

www.leSavoir.net

$$AB = 9 (0.5 \text{ pt})$$

b) Utilisation correcte de la propriété de pythagore. (0,25 pt)

$$AC = 7,79 (0,5 pt)$$

3) Propriété déduite de l'aire. (0,25 pt)

$$EC \times AB = AC \times CB \quad (0,25 \text{ pt})$$

$$EC = \frac{AC \times CI}{AB}$$

$$EC = 4.24$$
 (0.75 pt)

EXERCICE V 5 points

1. a) Démonstration correcte. (1 pt)

b)
$$Cos \widehat{BAC} = \frac{AB}{AC} et Cos \widehat{BAE} = \frac{AE}{AB} (0.5 pt)$$

$$\frac{AB}{AC} = \frac{AE}{AB}$$

$$AE = \frac{AB^2}{AC}$$
(0,5 pt)

$$AE = 6.4 (0.5 \text{ pt})$$

2. a)
$$(BC) \perp (AB)$$
 et $(EH) \perp (AB)$ (**0.5pt**)

$$(BC) \parallel (HE) (0,5 \text{ pt})$$

b) Utilisation correcte de la conséquence de la propriété de Pythagore. (0,5 pt)

$$HE = 3.84. (0.5 pt)$$

3) \widehat{FEA} et \widehat{FKA} interceptent le même arc \widehat{FA} donc \widehat{mes} $\widehat{FEA} = \widehat{mes}$ \widehat{FKA} . (1 pt)

EXERCICE VI 4 points

1)
$$A_1 = AB \times BC$$

= $(11 + x)(6 + x)$
= $(x^2 + 17x + 66)m^2$ (1pt)

2)
$$A_2 = EF \text{ xFG}$$

= $(8 - x)^2$
= $(x^2 - 16x + 64)m^2$ (1pt)

3. a)
$$A = A_1 - A_2$$

 $A = (33x + 2)m^2$ (1pt)

b) Pour
$$x = 4$$
 ou $A = 134 m^2$ (1pt)