Ministère de l'Education Nationale de l'Enseignement Technique et de La Formation Professionnelle

DRENET-FP : Agboville *** DDENET-FP : Tiassalé *** COLLEGE SAINT MICHEL TIASSALE

DEVOIR DE NIVEAU 1er TRIMESTRE 2019 - 2020

Niveau : T^{le} Série: A1 Durée : 3H

EPREUVE DE MATHEMATIQUES

Cette épreuve comporte deux (02) pages numérotées 1/2 et 2/2

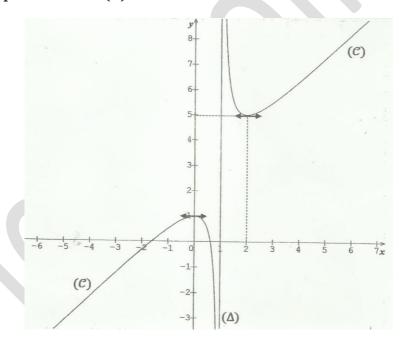
EXERCICE 1 (5 points)

On considère le polynôme P défini par $P(x) = 2x^3 - 5x^2 - x + 6$.

- **1. a)** Vérifie que P(-1) = 0.
 - **b)** Justifie que $P(x) = (x+1)(2x^2 7x + 6)$.
- **2. a)** Résous dans \mathbb{R} , l'équation $2x^2 7x + 6 = 0$.
 - **b)** En-déduis les solutions de l'équation (E): P(x) = 0.
- **3.** Résous dans \mathbb{R} , l'inéquation $P(x) \ge 0$.

EXERCICE 2 (4 points)

Le plan est muni d'un repère orthonormé (0,I,J), la fonction g est définie par la courbe représentative (\mathcal{C}) ci-dessous :



- 1. Par lecture graphique, détermine :
 - a) L'ensemble de définition \mathcal{D}_g de la fonction g.
 - **b)** Les limites suivantes :

$$\lim_{x \to 1} g(x) \quad ; \quad \lim_{x \to 1} g(x) \quad ; \quad \lim_{x \to -\infty} g(x) \quad ; \quad \lim_{x \to +\infty} g(x)$$

- **2.** Détermine l'équation de l'asymptote que la courbe (\mathcal{C}) admet.
- **3. a)** Détermine le signe de la fonction dérivée g'(x) de g.
 - **b)** Dresse le tableau de variation de la fonction g.

PROBLEME (11 points)

Le plan est muni d'un repère orthonormé (0,I,J); unité graphique : 1 cm. On désigne par (\mathcal{C}_f) la représentation graphique de la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{x^2 + x - 2}{x - 2}$$

- **1.** Détermine l'ensemble de définition \mathcal{D}_f de f.
- **2.** Calcule les limites suivantes et interprète graphiquement les résultats cipossibles :

$$\lim_{x \to +\infty} f(x) \quad ; \quad \lim_{x \to -\infty} f(x) \quad ; \quad \lim_{x \to 2} f(x) \quad ; \quad \lim_{x \to 2} f(x)$$

3. a) Démontre que, pour tout nombre réel x appartenant à \mathcal{D}_f , on a :

$$f(x) = x + 3 + \frac{4}{x - 2}$$

- **b)** Justifie que la droite (*D*) d'équation x y + 3 = 0 est une asymptote oblique à (\mathcal{C}_f) en $+\infty$.
- c) Etudie les positions relatives de la courbe (C_f) et de la droite (D).
- **4. a)** Démontre que, pour tout nombre réel x appartenant à \mathcal{D}_f , on a :

$$f'(x) = \frac{x(x-4)}{(x-2)^2}$$

- **b)** Détermine le signe de f'(x) et en-déduis les variations de f.
- c) Calcule f(0); f(4) et établis le tableau de variation de f.
- **5.** Justifie qu'une équation de la tangente (T) à (C_f) au point A(1;0) est : y = -3x + 3.
- **6.** Recopie et complète le tableau de valeurs suivant :

-	r r							
	x	-3	-2	-1	0	1	3	4
Ī	f(x)		0		1			9

7. Construis (T); (C_f) et ses asymptotes dans le repère (0,I,J).