BACCALAURÉAT SESSION 2019

Coefficient : 4 Durée : 3h

PHYSIQUE-CHIMIE

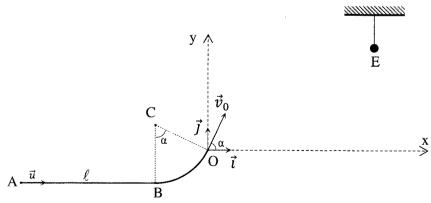
SÉRIE: D

Cette épreuve comporte quatre (04) pages numérotées 1/4, 2/4, 3/4 et 4/4. Le candidat ou la candidate recevra une (01) feuille de papier millimétré. Toute calculatrice est autorisée.

Exercice 1 (5 points)

Au cours d'une kermesse dans un Lycée Moderne, les élèves d'une classe de Terminale D participent à un jeu dénommé "Le Plus Adroit".

Ce jeu consiste à atteindre une cible par un projectile.


Pour cela, ils disposent d'une piste de lancement ABO comportant deux parties :

- AB est une portion rectiligne horizontale de longueur ℓ , munie d'un repère $(A, \vec{u}), \vec{u}$ étant un vecteur unitaire.
- BO est une portion circulaire centrée en C, de rayon r, d'angle au sommet α . CB est perpendiculaire à AB. Le projectile, assimilable à un point matériel de masse m part de A sans vitesse initiale à l'instant t=0, sous l'action d'une force \vec{F} . Cette force, exercée par un concurrent entre A et B, est de direction horizontale. Avec la vitesse \vec{v}_B acquise en B, le projectile aborde la portion BO.

À partir de 0, le projectile animé d'une vitesse \vec{v}_0 inclinée d'un angle α par rapport à l'horizontale, effectue une chute dans le champ de pesanteur uniforme \vec{g} . La cible à atteindre est fixée en un point E de coordonnées x_E et y_E dans le repère $(0, \vec{i}, \vec{j})$ (voir figure).

Le vainqueur de cette compétition est celui dont le projectile atteint la cible au sommet de la trajectoire. Dans tout l'exercice, les forces de frottements sont négligeables.

On donne: $\ell = 5 m$; m = 1 kg; $\alpha = 60^{\circ}$; r = 1 m; $x_E = 0.69 m$; $y_E = 0.59 m$.

- 1. Étude du mouvement du projectile sur le parcours AB
 - 1.1. Préciser:
 - 1.1.1. le système étudié ;
 - 1.1.2. le référentiel d'étude.
 - 1.2. Faire l'inventaire des forces appliquées au système.
 - 1.3. Énoncer le théorème de l'énergie cinétique.

- 1.4. Exprimer la valeur v_B de la vitesse en B en fonction de F, ℓ et m en appliquant ce théorème.
- 1.5. Calculer la valeur v_R pour F = 2.5 N.
- 1.6. Énoncer le théorème du centre d'inertie.
- 1.7. Déterminer, en appliquant ce théorème :
 - 1.7.1. la valeur $\hat{a_u}$ de l'accélération;
 - 1.7.2. la durée t du parcours.
- 2. Étude du mouvement sur le parcours BO
 - 2.1. Montrer que la valeur de la vitesse \vec{v}_0 atteinte par le projectile en O a pour expression :

$$v_0 = \sqrt{v_B^2 - 2gr(1 - \cos\alpha)}$$

- 2.2. Calculer v_0 .
- 3. Étude du mouvement au-delà du point O

Pour la suite, on prendra $v_0 = 4m. s^{-1}$.

- 3.1. Établir les équations horaires x(t) et y(t) du mouvement dans le repère $(0, \vec{\iota}, \vec{j})$.
- 3.2. Déduire de la question précédente, l'équation cartésienne de la trajectoire y(x).
- 3.3. Montrer que = $-0.25x^2 + 1.73x$.
- 3.4. Déterminer les coordonnées :
 - 3.4.1. de la flèche;
 - 3.4.2. de la portée.
- 3.5. Montrer que ce concurrent est le gagnant de la compétition.

Exercice 2 (5 points)

L'uranium ²³⁵₉₂U est un nucléide qui peut subir une fission ou une désintégration radioactive.

1. Étude de la désintégration radioactive de l'uranium 235 U

L'uranium $^{235}_{92}$ U est émetteur de particules α . Sa période est $T=7,2.10^8$ ans. On rappelle que la loi de décroissance radioactive s'écrit : $N=N_0e^{-\lambda t}$.

- 1.1. Définir la période radioactive T d'un nucléide.
- 1.2. Calculer la constante radioactive λ de l'uranium $^{235}_{92}$ U.
- 1.3. On dispose d'une masse $m_0 = 1$ g d'uranium $^{235}_{92}$ U à la date t = 0.
 - 1.3.1. Vérifier que le nombre de noyaux N_0 présents dans la source à la date t=0 est $N_0=2,56.\,10^{21}$ noyaux.
 - 1.3.2. Déterminer le nombre de noyaux N(t) présents dans la source aux dates t = T, t = 2T et t = 3T.
 - 1.3.3. Représenter qualitativement la courbe de décroissance radioactive N = f(t) sur 3 périodes successives (faire figurer les ordonnées des points d'abscisses 0, T, 2T et 3T).
- 2. Étude de la fission de l'uranium²³⁵U
 - 2.1. Définir la fission nucléaire.
 - 2.2. Par capture d'un neutron, l'uranium ²³⁵₉₂U donne la réaction nucléaire suivante :

$$^{235}_{92}\text{U} + ^{1}_{0}n \rightarrow ^{\text{A}}_{54}\text{Xe} + ^{95}_{\text{Z}}\text{Sr} + 2^{1}_{0}n$$

- 2.2.1. Rappeler les lois de conservation au cours d'une réaction nucléaire.
- 2.2.2. Calculer les valeurs de A et de Z en utilisant ces lois.

Données: $m(^{235}_{92}U) = 3,903.10^{-25} \text{ kg}.$

Exercice 3 (5 points)

Le laboratoire d'un Lycée Moderne dispose d'une solution S de base faible B de concentration molaire volumique C_b inconnue.

Un Professeur de Physique-Chimie d'une classe de Terminale D désire identifier cette base par deux méthodes, la méthode pH-métrique (expérimentale) et la méthode théorique.

Il confie cette tâche à un groupe d'élèves. Pour cela, il met à sa disposition :

- une solution d'acide chlorhydrique de concentration molaire volumique $C_a = 10^{-1} \ mol. \ L^{-1}$;
- la solution de base :
- le dispositif nécessaire pour réaliser un dosage pH-métrique et une dilution.

Le groupe réalise le dosage d'un volume $V_b = 10 \ mL$ de la solution de base par la solution d'acide chlorhydrique. Les résultats obtenus sont consignés dans le tableau ci-dessous :

V _a (mL)	0	1	2	3	4	5	6	7	8	8,3	9	10	11
pН	11,8	11,3	11,0	10,9	10,8	10,7	10,5	10,2	9,3	3,0	2,5	1,9	1,6

À la température de l'expérience, le produit ionique de l'eau est $K_e = 10^{-14}$.

Par la suite, à partir de la solution de base, le groupe prépare une solution S' de concentration molaire volumique $C_b' = 10^{-2} \ mol. \ L^{-1}$, dont le pH est égal à 11,3.

On donne les pK_a de quelques couples acides/bases dans le tableau ci-dessous :

Couple acide/base	pK_a
$(CH_3)_2NH_2^+/(CH_3)_2NH$	11,0
$(CH_3)_3NH^+/(CH_3)_3N$	9,9
(CH ₃)NH ₃ ⁺ / (CH ₃)NH ₂	10,7

1. Identification de la base faible par la méthode pH-métrique

- 1.1. Faire le schéma annoté du dispositif expérimental.
- 1.2. Écrire l'équation-bilan de la réaction du dosage.
- 1.3. Tracer la courbe $pH = f(V_h)$.
 - 1 cm pour 1 mL;
 - 1 cm pour 1 unité de pH.

1.4. Déterminer:

- 1.4.1. les coordonnées du point E à l'équivalence ;
- 1.4.2. les coordonnées du point F à la demi-équivalence ;
- 1.4.3. la concentration molaire volumique C_b de la solution.
- 1.5. Donner la valeur du pK_a du couple acide/base étudié.
- 1.6. Déduire de la question 1.5 le nom de la base et le couple acide/base correspondant.

2. Identification de la base faible par la méthode théorique

Nous supposons qu'il s'agit de la méthylamine.

- 2.1. Écrire l'équation-bilan de la réaction chimique de la méthylamine avec l'eau.
- 2.2. Faire l'inventaire des espèces chimiques présentes en solution.
- 2.3. Calculer les concentrations molaires volumiques des espèces chimiques présentes en solution.
- 2.4. Calculer le pK_a du couple acide/base étudié.
- 2.5. Dire si cette valeur de pK_a confirme le nom de la base faible trouvé en 1.6.

Exercice 4 (5 points)

Le Professeur de Physique-Chimie d'un Lycée Moderne demande à un groupe d'élèves d'effectuer des réactions de synthèses de composés organiques à partir de l'hydratation d'un alcène, le but-1-ène de formule semi-développée :

1. Hydratation de l'alcène

- 1.1. Donner les noms et les formules semi-développées des produits formés.
- 1.2. Identifier le produit majoritaire. Justifier votre réponse.

2. Première synthèse

Le groupe réalise par la suite, l'oxydation ménagée en milieu acide de l'un des produits de l'hydratation, le butan-1-ol, par le dichromate de potassium en excès. Il obtient un produit A.

- 2.1. Donner la fonction chimique de A.
- 2.2. Donner la formule semi-développée et le nom de A.

3. Deuxième synthèse

Le composé A réagi avec le chlorure de thionyle pour donner un composé B.

Le composé B réagit avec le butan-2-ol pour donner un composé C.

Le composé B réagit également avec l'ammoniac pour donner un composé D.

- 3.1. Donner la fonction chimique et le nom :
 - 3.1.1 du composé B;
 - 3.1.2 du composé C;
 - 3.1.3 du composé D.
- 3.2. Écrire l'équation-bilan de la réaction entre le composé B et le butan-2-ol. Donner les caractéristiques de cette réaction.

MINISTERE DE L'EDUCATION NATIONALE DE L'ENSEIGNEMENT TECHNIQUE ET DE LA FORMATION PROFESSIONNELLE

DIRECTION DES EXAMENS ET CONCOURS

SOUS-DIRECTION DES EXAMENS ET CONCOURS SCOLAIRES

SERVICE BACCALAUREAT

BACCALAUREAT - SESSION 2019

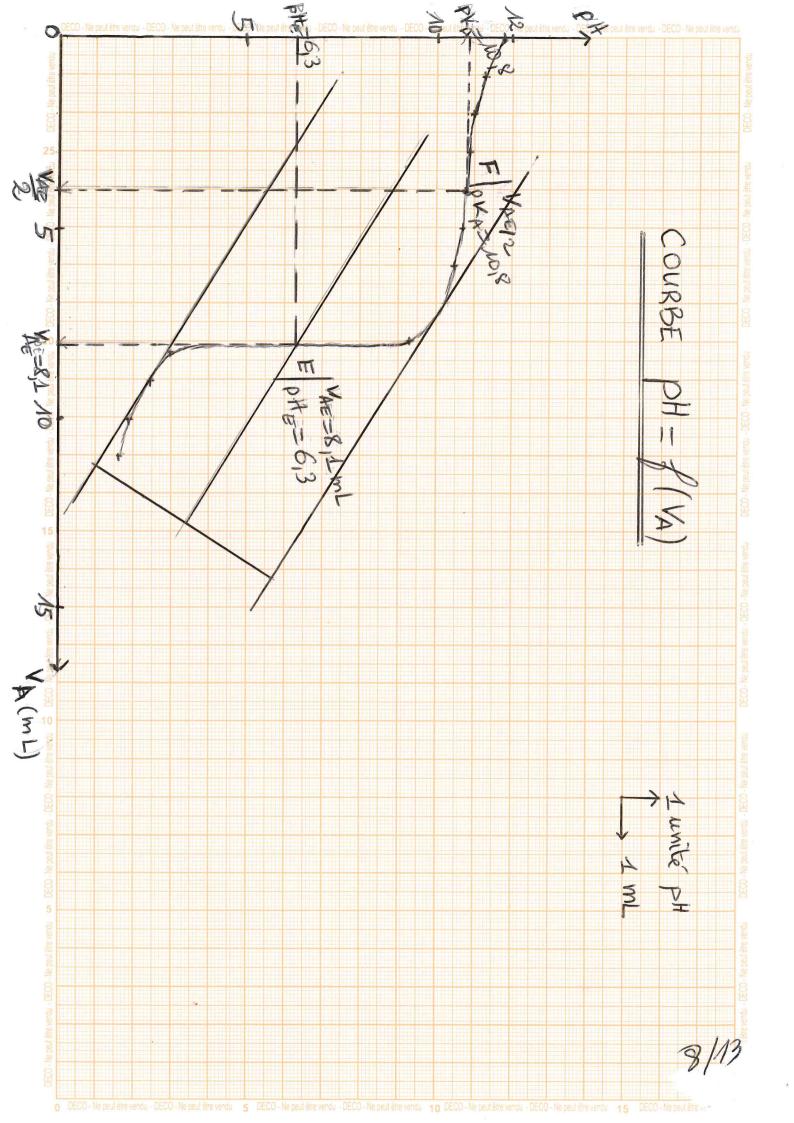
EPREUVE: Physrifue Chimie	DATE : 11/17/19 HEUR	E:114-> Jul
CORRIGE ET BAREME	SERIE(S):	D

CORRIGE	BAREME
exercice + (T/Hs)	x = 0,25.
I Etudo du mouvement seu le parlours AB	
11 Anglisons	
un susteme etudie le projetite.	<u>*</u>
11.2 Référentiel: Merestre supposé balilien	*
12 forces afflictures	
P. Said de projectice, R reaction de la pure	*
12. forces afflictués P. saids de projectice, R'édition de la birte F' force affliquée, fai le concurrent	
13 Enonce du shépreme de l'energie cinétique	
Dans un référentier Golileen la Variation de l'energie cinétisque d'un solide entre deux	toute oute
instouts est égale à la somme algebrique	100 mulatio
du travair de toules les forces extérieure qui	1
D'exercent sur le solide entre en deux	the accepter.
intants.	
14 Rôter ni natio de la Valern de UR	
1 12 1 may 1 = 111 + 1112 avec Up =0	
WO -0 VA -0 -> VB = 18 F4.	*
15. VB = [2x5x2,5] VB = 5 m 5	
1 VB = 3 M /3	<u> </u>

PREUVE: PHYSTQUE CHIMIE DATE: 11/07/2019 HEURE: S	ERIE(S):
CORRIGE	BAREME
16 Enoncé du théorème du centre d'inertie	
Dans un reférentiel galiléen la somme des forces appliquées à un solide est	
gale au probuit de sa mare m- par le vecteur accelération de son	
Kentre d'inertie: 3f = ma?	
1.7 Détermination: 17.1 de la valeur de l'accélération 3 ° = ma => P+P+P= ma?	
J	
Projection sur (A, M): 0+0+F=Man	
17 2) de la durée t du parcours: Le mouvement du projectile est rectilique uniformement variel, done on a	7
$x = \frac{1}{2} a_u t^2 + v t + x_0 n v = 0 l t x$	0
donc $\chi = \ell = \frac{1}{2}at^2 \Rightarrow t = 2a \cdot \ell$	→ *
$t - \sqrt{\frac{2k}{a_u}} + \sqrt{\frac{2\lambda}{a_u}} = 2\lambda$	>*
2 Étude du mouvement sur le bancours B	0
2.1 Valeur 1/2 de la MITEME! Bilan des forces: C	
P: poids du projectile & P	
B B	
BACCALAUREAT – SESSION 2019 SERVICE ORGANISATION DU BACCALAUREAT, Tél. S/Direction: 20 32 19 45 Ce barème est national. Il ne peut être modifié	Page. 2/.

REUVE: PHYSTQUE - CHIMEDATE: 11/07/2019 HEURE: S	BAREME
Théoreme de l'énergie cinétique. LE = SNS 1 mu 2 - 1 mu 2 (- W > 1 + W = or W = c	
$\Rightarrow \frac{1}{2} m \sqrt{2} = \frac{1}{2} m \sqrt{2} = -mgh \text{ avec } h = K - \Gamma \cdot (1 + r)$ $\Rightarrow \frac{1}{2} m \sqrt{2} = \frac{1}{2} m \sqrt{2} - mgr(1 - \cos x)$	odk
	
2.2 Calcul de No	
$N_0 = \sqrt{5^2 - 2.10.1(1 - 0.0160^\circ)}$	
Soit $N_0 = 3.9 \text{m. s}^{-1}$	*
3. Etude du monvement au-delà de 0	
3.1 Equations horaires du mouvement	
There we one centre d'inertie: Ef=Ma; P=ma; => a=g;	Do'monstration
bonc $V = tg^2 + V_0$	**
Soit $0G = \frac{1}{2} tg + t N_0 + 0G Avec$	
$ \frac{y}{(x(t))} = N_0 \cdot \cos x \cdot t (1) $	 >*
Soit Soit $y(t) = -\frac{1}{2}gt^2 + \sqrt{0}$, Aind $t(2)$	

BACCALAUREAT – SESSION 2019 SERVICE ORGANISATION DU BACCALAUREAT, Tél. S/Direction : 20 32 19 45 Ce barème est national. Il ne peut être modifié


EPREUVE: PHYSTAUF_CHIMIE DATE: 11/07/2019 HEURE: SE	RIE(S):
CORRIGE	BAREME
32 Equation cartégienne y(x)	
$(1) \Rightarrow t = x$ $N_0 \cos x$	> *
$y(x) = -\frac{2}{2}x^{2} + x \cdot \tan x$	→***
N.B.: les questions 3.3; 3.4 et 3.5 Sout supprimées.	
	/
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PREUVE: PHYSIQUE - CHIMIE DATE: 11007, 2019 HEURE:	SERIE(S):
CORRIGE	BAREME
EXERCICE 2 ( 5 POINTS )	*= 9,25
1.1 DÉFINISSONS LA PÉRIODE RADIOACTIVE LA PÉRIODE RADIDACTIVE T EST LA DURÉE AU BOUT DE	**
LAQUELLE LA MOITIÉ DES NOYAUX RADIDACTIFS INITIAUX EST DÉSINTÉGRÉE :	
1.2 CALCULONS LA CONSTANTE RADIOACTIVE X	**
$T = \frac{7.2.108 \times 365 \times 24 \times 3600}{\lambda - 3.05 \cdot 10^{-17}  \text{s}^{-1}}  \text{ou}  \lambda - \text{Ln 2}$	
$\frac{\lambda = 3107 \cdot 10^{-1} \text{ s}}{\text{rd}  \lambda = 9.63 \cdot 10^{-10} \text{ ap}^{-1}} = \frac{7.2.10^8}{7.2.10^8}$	<del>*</del>
1.3.1 VÉRIFIONS LA VALTUR DE No  No = mo = 1.10-3 = 2,56.1021 noyaux  m 23511 = 3,903.10-25	* * (txPAESSION
92 12	* ( APPLICATION
$\frac{1 \times 6_{1}023.10^{2}}{M_{U}} = \frac{1 \times 6_{1}023.10^{2}}{237} = \frac{2.56_{0}10^{21}}{100} = \frac{100}{100}$	NUMÉRIQUE)
1.3.2 DÉTERMINONS LE NOMBRE DE MOYAUX  • $t = T \implies N(T) = \frac{No}{2} = 1,28.10^{21}$ noyaux	***************************************
$t = 2T \longrightarrow N(2T) = \frac{N_0}{4} = 0.64.10^2 \text{ noyaux}$	*
$t = 3\overline{1} \implies N(3\overline{1}) = \frac{N_0}{8} = 0.32.10^{21} \text{ noyaux}$	*
1.3.3 REPRÉSENTONS QUALITATIVEMENT N=f(t)	

BACCALAUREAT – SESSION 2019 SERVICE ORGANISATION DU BACCALAUREAT, Tél. S/Direction : 20 32 19 45 Ce barème est national. Il ne peut être modifié Page 5/13.

CORRIGE	BAREME
No	
	A. (, V
	***
No/2	
Ny4	
No/8	
T 2T 3T t(ans)	
A (A ) (A	
2.1 DÉFINISSONS LA FISSION NUCLÉAIRE	
A FISSION NUCLEAIRE EST LA DÉSINTÉGRATION N'UN NOYAU	**
LOURD DOUR DONNER NAISSANCE À BEUX (DU PLUSIEURS)	
NOYAUX PLUS LÉGERS 2.2.1 RAPPELONS LES LOIS DE CONSERVATION	
CONSTRUCTION TES COIS DE CONSCRUATIONS	*
· CONSERVATION DU NOMBRE DE MASSE(A) · CONSERVATION DU NOMBRE DE CHARGE (Z)	*
o CONSERVATION OF NOMPRE DE CITALE LE	
B: ACCEPTER TOUTE AUTRE FORMULATION CORRECTE	
2.2.2 CALCUL DE A ET DE Z	
$235+1 - A+95+2 \implies A = 139$	<u> </u>
92+0 - 54+7+0 -> 7 - 38	<u> </u>

1. Identification de la brase faible  11. 3 Ché ma du disfosité experimental  Colune Churchydrique  Churchydrique  Churchydrique  Churchydrique  Churchydrique  Churchydrique  A music  Masseau ai maisle 1977  A equation magnetique  PH-onethe  1. Equation blan de la reaction  B + H30° > B H1° + H2D *  1. 3. Those de la Courbe (Ven papier multimetré)  1. 1. Jetumine  1. 1. Coordonnées du Joint E  Van Courbe  Van Courbe  Taut	REUVE: Physique Chrisil Date: MOJ 2019 HEURE: M. INSE	BAREME
Schemes du dis fostit experimentel  Chine Chirchyphique  chotio  Chine Chirchyphique  chotio  Chine Chirchyphique  chotio  Chirchyphique  A success amounte might  A equation magnetique pettonehe  A Equation belon de la reallian  B + H30 -> BH + H2D *  A 3. hole de la Combe (Ven papier mullimetie)  A 13. hole de la Combe (Ven papier mullimetie)  A 14. Condonnee du Joint F:  Uan Combe (Combe	exercise 3 5 from contract	
Schemes du dis fostit experimentel  Chine Chirchyphique  chotio  Chine Chirchyphique  chotio  Chine Chirchyphique  chotio  Chirchyphique  A success amounte might  A equation magnetique pettonehe  A Equation belon de la reallian  B + H30 -> BH + H2D *  A 3. hole de la Combe (Ven papier mullimetie)  A 13. hole de la Combe (Ven papier mullimetie)  A 14. Condonnee du Joint F:  Uan Combe (Combe	1 Il I litation de la base Anible	
Colinse Chlorhydrighis  Chlorhydrighis  Chlorhydrighis  Chlorhydrighis  Chlorhydrighis  Chlorhydrighis  Chlorhydrighis  Chlorhydrighis  Annel Counter Chlorhydrighis  X  Agreem aumante To To X  Agree	1. I dente from a de sour francisco	
Chlirhydrights  chutio  in house  house magnetique  phosehe  agritotiu magnetique  phosehe  1 Equalipy below de la reaulian  B + H30 -> BH + + H2D   *  13 have de la Combe (Van papier mullimetre)  14 Detumine  14 Condonnee du Joint E  Van Combe	, , ,	
Solution		
bareau au mante min   agitalius magnetique p+1 onethe  12 Equalion balan de la reachion  B + H30 \rightarrow BH + H2D   *  13 Tracé de la Courte (Ven papier mullimetre)  14 Determine  14 Determine  14 Determine  14 Contatorne du Joint E.	otente - Chioragenique	
Savenu aimante min    A Equation magnetique   PH-mètre      12 Equation belon de la séculiar     B + H2O	olutio privelle	
acquation magnetique p+1-mètre  12 Equation balan de la réalian  B + H20 -> BH + + H2D   *  13 Thaté de la Combe (Van papier * * *  nullimètre )  14 Determine   14 Comdonnée du Joint F:  Vour Combe   Combe	a mase	
acquation magnetique p+1-mètre  12 Equation balan de la réalian  B + H20 -> BH + + H2D   *  13 Thaté de la Combe (Van papier * * *  nullimètre )  14 Determine   14 Comdonnée du Joint F:  Vour Combe   Combe		
12 Equation below de la réaction  B + H20 - > B + + + + + + D  *  13 Those de la Combe (Ven papier * *  nullimetie >  14 Determine:  14 La Condonnée de Joint E.  Van Combe	bareau au mante minis	
12 Equation bilan de la séachan  B + H30 - > BH + + H20   13 Thore de la Combe (Van papier x *  nullimetie)  14 Detamine:  14 Coordonnees du Joint E.  Van Combe		
B + H30 - > BH + + H2D *  13. /hocé de la Combe. (Ven papier * *  Mullimetré \  14. Coordonnee de Joint E.  Von Combe.  Von Combe.	agetatius magnetique PH-mene	
B + H30 _ > B + H + H2D    13. /hove de la Combe. (Ven papier    mullimetre )  14. Coordonnees de Joint E.  Von Combe.  Von Combe.		
B + H30 - > BH + + H2D *  13. /hocé de la Combe. (Ven papier * *  Mullimetré \  14. Coordonnee de Joint E.  Von Combe.  Von Combe.		- 62 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6
B + H30 - > BH + + H2D *  13. Those de la Combe. (Ven papier * *  Mullimetre \  14. Corndonnee de Joint E.  Van Combe.  Van Combe.		
B + H30 - > BH + + H2D *  13. Those de la Combe. (Ven papier * *  Mullimetre \  14. Corndonnee de Joint E.  Van Combe.  Van Combe.	12 Equation below de la réaction	
13. Those de la Combe (Van papier * *  14 Determine.  141. Condonnées du Joint E.  Van Combe. (Van papier * *  Non		***************************************
14 Determine.  14. Coordonneer du Joint E.  Van Combo.  ———————————————————————————————————	B + H30 - > BH + H20	*
14 Determine.  14. Coordonneer du Joint E.  Van Combo.  ———————————————————————————————————		
14 Determine.  14. Coordonneer du Joint E.  Van Combo.  ———————————————————————————————————		
14 Detamine.  14. Coordonneer du Joint E.  Vour Combo.  Title	13. Those de la Combe. (Vou papier	<del>**</del> **********************************
141. Comdonneer du Joint E.  Vour Combre	milli metre	
141. Comdonneer du Joint E.  Vour Combre		
141. Comdonnees du Joint E.  Vour Combol.	111 Determine	
Vou Combe.		
Vou Combe.	141. Componees du joint E.	
E   the 38,1mL   toute Valeur producest as	Vou Combe	
E   PH = 6,3   mother extant	11 - 8 1 m L.	toute Valeur
T PH > 6,3	F THE	produe est acc
	PH = 6,3	*****************
		*



EPREUVE: Physique Chumu Date 117 2019 HEURE 114-164 S	ERIE(S):
COPPICE	BAREME
142 Coordonnées du foisit F (Vou papies millimetre)	
$\frac{1}{F} \frac{\sqrt{4E}}{\sqrt{2}} = \frac{24,05 \text{ m L}}{\sqrt{100,8}}$ $PH = 10,8$	
NR accepter toute Valeur comprise entre 10,6 of 10,8	
143 Concentration molane Volum	
ã l'équivalence Co Vo = co Vo E	
$\frac{C_{5} - C_{a} V_{a} E}{V_{5}}$ $\frac{C_{5} - O_{1} 1 + 8_{1} 10^{2}}{10^{-2}}$	
$\frac{Cb = 0.1 + 8.1 \cdot 10^{3}}{10^{2}}$ $\frac{Cb = 8.1 \cdot 10^{3} \text{ ml/l}}{10^{3}}$	accepter Loute Valeur
15. Valeur de PKg.	entre 8 10° of 8,2 10° 2.
Aka = Aka pha - pH 10,8	
enhe 10 10,6 et 10,8.	***************************************

PREUVE : HEURE :SI	ERIE(S):
CORRIGE	BAREME
1-6 Nom de le base : méthylamine	<u>+</u>
Couple acide/base - (CH3)NH3 / (CH3)NH2	
2 I dentification du pra par la méthod théorique 21 Equation bilan	
2-1 Equation 5 Plan  CH3 NH2 + H20 => CH3 NH3 + OH-	*
22-Inventaire des espèces chimique présentes en polition:	
CH3 NH2: CH3 NH3 1 H3 0+, OH; (H20)	<u></u>
23 - Calcul des concentrations molaines volumiques des espèces chimques	
[H30+]-10-PH-10-113-5.10 mol/L	\ <del>*</del>
$[OH-] = \frac{Ke}{[H_30^{+}]} = \frac{10^{-14}}{5.10^{-12}} - 2.10^{-3} \text{ md} \mu$	
Equation d'électronentralité	
$[H_3O^+] + [CH_3NH_3^+] = [OH^-]$ $[CH_3NH_3^+] - [OH^-] - [H_3O^+] \sim [OH^-]$	*
[CH3NH3] = 2.103 mol/L	

PREUVE : HEURE :SERIE(S) :	
CORRIGE	BAREME
Conservation de la matière	
Cb-[CH3NH3+]+[CH3NH2]	
[CH3NH2] = Cb - [CH3NH3+]	
[CH3NH2]=10-2-2,16-3	
[CH3NH2] = 8. 10-3 mol/L	<u> </u>
24 Calcul de pla	1
ApH = ApRa + log [CH3 NH2] [CH3 NH2]	
Aph = pH - log [CH3 NH2]	NB acceptes
$pV_{a} = 11,3 - log 8. \omega^{-3}$ 2. $\omega^{-3}$	methode
10,7	
25 La valeur de pla confinme le nom de la base faible	*
trouve en 1-6	

EPREUVE: Physique - Chimie DATE: M/07/2019 HEURE: MHal	(H SERIE(S): D
COPPICE	BAREME

CORRIGE	BAREME
Exercice 4 (5/points)	*= orght
1. Hydratation du buf-1-ène 1.1- CHz-CHz-CHz-CHz-OH butan-1-ol	***************************************
1.1- CH3-CH3-CH3-CH3-OH butan-1-08	<del>}</del> <del>X</del> <del>X</del> —
CH2-CH2-CH-CH3 butan-2-of	> * *
OH C	
1-2 - Le produits majoritaire est le	*
butan-2-ol car au cours de l'hydratation d'un alcène dissymétrique (ore non samotrique)	
l'al con magoritaire est relie dont la classe	
est la plus élevre	
2 - Premiere synthère	
21- Fonction chimique de A: Aest un acide	→ *
Car Do xy Man	<del>*************************************</del>
2.2 - CH3-CH2-CH-C-OH - 1 0 avide butanoique -	<del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>
3 Deuxième synthèse	
3 - Villaceme paracross	
3.1.1- Best un chloruse d'acyle (ou d'acide)	) <del> </del>
C'est le chlorure de butanoyle	+ <u>&gt;</u> *
	/
3.1.2- Cest un ester	+ <del>2</del> <del>X</del>
C'est le butano até de 1-méthylpropule	7.7.
012 1 1 10 0 1 1	<del>***</del>
3.1.3- Dest un amide C'est le butanamide	<del>*************************************</del>
CEST LE SUI GITANAGE	

PREUVE: HEURE:	
CORRIGE	BAREME
3 9 For atin 1-10.	
3.2-Equation Silan	
CH3-CH2-CH2-G-Cl+CH3-CH2-CH-CH3->	~~~~~~~~~~~~~~~~
O OH A	
CH3-CH2-CH2-C-0-CH-CH2-CH2+HCl O CH3	* *
O CH2	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
Caracteristiques & Tapiao, locare,	-> <del>*</del> *
Caracteristiques : Rapide, totale, exothermique	
/	
	*************
	P 10 2 2 4 10 2 2 2 2 2 3 4 5 5 10 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	00 of 60 to 10
	# W & W & W & W & W & W & W & W & W & W
	# 10 10 10 10 10 10 10 10 10 10 10 10 10