www.leSavoir.net

Direction des Examens et Concours * Direction des Examens et Concours * Direction des Examens et Concours

BACCALAUREAT

Durée: 4 h

DEUXIEME SESSION 2006

Coefficient: 4

MATHEMATIQUES

SERIE: D

Cette épreuve comporte 2 pages numérotées 1/2 et 2/2 et une feuille annexe à rendre avec la copie. Le candidat recevra 2 feuilles de papier millimétré. Toute calculatrice est autorisée.

EXERCICE 1

On a mesuré la hauteur et la circonférence au collet d'un lot de 10 cocotiers âgés de 5 ans. Les résultats obtenus sont les suivants :

Circonférence x; en cm	14	15	15	. 17	18	19	20	20	22	23
Hauteur y _i en cm	300	300	320	330	360	350	360	420	360	420

- Représenter graphiquement le nuage de points de couples de coordonnées (xi, yi) dans le plan muni d'un repère orthogonal. On prendra 2 cm pour 1 unité sur l'axe des abscisses et 1 cm pour 10 unités sur l'axe des ordonnées.
- 2. Déterminer les coordonnées (x; y) du point moyen G.
- 3. Placer le point G.
- 4. Calculer la variance V(x) de x et la covariance Cov(x,y) de x et y.
- Démontrer qu'une équation de la droite de régression (D) de y en fonction de x est:
 y = ax + b où a et b ont pour arrondis respectifs d'ordre 2 les nombres 11,94 et 133,50.
- 6. Tracer (D).
- 7. Selon l'ajustement ainsi réalisé, estimer la hauteur d'un cocotier dont la circonférence au collet est égale à 16 cm ?

EXERCICE 2

La figure de la feuille annexe représente la courbe représentative (C) de la fonction f définie sur]0; $+\infty[$ par : $f(x) = \frac{x+2}{x}$.

- Calculer les coordonnées du point d'intersection A de la courbe (C) et de la droite (D) d'équation : y = x.
- 2. On considère la suite (U_n) définie par : $U_0 = 1$ et $\forall n \in \mathbb{N}$, $U_{n+1} = \frac{2 + U_n}{U_n}$.
 - a. Utiliser la courbe (C) pour représenter U₁, U₂, U₃, et U₄ sur l'axe des abscisses (on laissera les traits de construction en pointillés sur le graphique).
 - b. A partir du graphique, conjecturer la limite de la suite (Un).
 - c. Démontrer par récurrence que : $\forall n \in \mathbb{N}, U_n > 0$.

www.leSavoir.net

- On considère la suite (V_n) définie par : $V_n = \frac{-2 + U_n}{1 + U_n}$. 3.
 - a. Démontrer que (Vn) est une suite géométrique dont on précisera la raison et le premier terme.
 - b. Démontrer que : $\forall n \in \mathbb{N}, \ V_n = (-\frac{1}{2})^{n+1}$.
 - c. En déduire une expression de Un en fonction de n.
 - d. Calculer la limite de la suite (U_n).

PROBLEME

On considère la fonction f dérivable sur l'intervalle |0,+∞ | et définie par :

$$f(x) = \frac{2(x-1)}{x} - \ln x.$$

On désigne par (C) sa courbe représentative dans le plan muni du repère orthonormé (O, I, J). Unité graphique : 2 cm.

Partie A

- Calculer les limites de f en + ∞ et en 0.
- Calculer la limite de $\frac{f(x)}{x}$ en $+\infty$ et donner une interprétation graphique du résultat.
- 3. Calculer f'(x) pour tout nombre réel x appartenant à 0,+∞ .
- 4. Etudier les variations de f et dresser son tableau de variation.
- Déterminer une équation de la tangente (T) à (C) au point d'abscisse 1.
- Démontrer que l'équation : $x \in [2,+\infty)$, f(x) = 0 admet une solution unique α comprise entre 4,9 et 5.
- Démontrer que, pour tout nombre réel x appartenant à l'intervalle] 0, +∞[,

$$f(x)>0 \Leftrightarrow x \in]1;\alpha[$$

 $f(x)<0 \Leftrightarrow x \in]0;1[\cup]\alpha;+\infty[$
 $f(x)=0 \Leftrightarrow x \in \{1;\alpha\}.$

- Exprimer $\ln \alpha$ en fonction de α .
- Tracer (T) et la courbe (C).

Partie B

- A l'aide d'une intégration par parties, calculer $\int_{\alpha}^{\alpha} \ln x \, dx$ en fonction de α .
- Calculer, en fonction de a, l'aire en cm² de la partie du plan comprise entre (C), l'axe des abscisses et les droites d'équations respectives x = 1 et $x = \alpha$.

Partie C

Soit g la restriction de f à l'intervalle 0;2].

- Démontrer que g est une bijection de]0;2] sur l'intervalle]-∞; 1-ln2]. 1.
- Démontrer que la bijection réciproque g⁻¹ de g est dérivable en 0 puis calculer (g⁻¹)'(0). Soit (C') la courbe représentative de g⁻¹ dans le repère (O, I, J). 2.
- 3. Construire (C') en indiquant la méthode utilisée.