BACCALAUREAT SESSION 2009

SCIENCES PHYSIQUES

SÉRIE: D

EXERCICE N°1

Le jeu de Volley-ball

Les parties I et II sont indépendantes. On prendra g = 9.8 m.s⁻².

Au cours d'un match de volley-ball, un joueur effectue le service. Le service est réussi si la balle passe au-dessus du filet et tombe à moins de 9 m derrière celui-ci.

I. Première phase

L e joueur lance la balle verticalement vers le haut d'un point A situé à une hauteur $h_A = OA = 1,80$ m du sol. La balle atteint le sommet de sa trajectoire au point B tel que $h_B = OB = 3.10$ m. (voir figure).

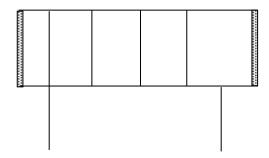
- 1. Déterminer la vitesse v_A avec laquelle la balle a été lancée en A.
- 2. Etablir l'expression de la vitesse v(t) du centre d'inertie G de la balle dans le repère $(0, \vec{k})$.
- 3. Déterminer la durée du trajet AB.

II. Deuxième phase

Il frappe la balle quand celle-ci est au point B et lui communique une vitesse \vec{v}_0 horizontale.

- 1. Etablir les équations horaires x(t) et z(t) du mouvement de G dans le repère (O, \vec{i} , \vec{k}) (voir feuille annexe). En déduire l'équation cartésienne de la trajectoire. L'instant où la balle quitte le point B est choisi comme origine des dates.
- 2. La balle passe par le point C de coordonnées $x_C = 9.3$ m et $z_C = 2.5$ m, situé à la verticale du filet.
 - 2.1 Exprimer la vitesse v_0 en fonction de g, x_C , z_C et z_B .
 - 2.2 Représenter sur la courbe en annexe les vecteurs vitesse \vec{v}_0 et \vec{v}_C selon une échelle de votre choix.
- 3. la balle tombe sur le sol au point D.
 - 3.1 Calculer l'abscisse x_D du point D. On prendra $v_0 = 26,6$ m.s⁻¹.
 - 3.2 Le service est-il réussi ? Justifier votre réponse.

EXERCICE N°2


Etude du champ magnétique créé par un solénoïde long

Les deux parties A et B sont indépendantes.

Partie A

Un solénoïde long parcouru par un courant continu d'intensité I crée un champ magnétique \vec{B} .

- 1. Reproduire le schéma du solénoïde ci-dessous et représenter :
 - 1.1 le sens choisi du courant ;
 - 1.2 les lignes de champ et leur sens ;
 - 1.3 le champ magnétique à l'intérieur du solénoïde (direction et sens).
- 2. Compléter le schéma en y indiquant les faces du solénoïde.

Partie B

Pour utiliser ce solénoïde, on se propose de déterminer le nombre de spires qui n'est malheureusement pas indiqué.

Pour ce faire, on mesure la valeur du champ magnétique \vec{B} à l'intérieur du solénoïde en faisant varier l'intensité du courant I qui le traverse.

- 1. Faire un schéma annoté du dispositif expérimental.
- 2. Les résultats sont consignés dans le tableau suivant :

I(A)	0	1	1,5	2	2,5	3	3,5	4	4,5
B(mT)	0	0,63	0,94	1,25	1,55	1,89	2,15	2,48	2,80

Tracer la courbe B = f(I).

Echelle: 1 cm \leftrightarrow 0,5 A et 1 cm \leftrightarrow 0,5 mT

Déduire de la courbe que B est proportionnel à I et déterminer le coefficient de proportionnalité k (en unité SI).

Donner l'expression de B en fonction de la longueur du solénoïde ℓ , du nombre de spires N, de l'intensité du

courant I et de la perméabilité du vide μ₀.

Déterminer le nombre de spires N.

Données : $\mu_0 = 4\pi 10^{-7}$ (unité SI) ; $\ell = 40$ cm ; section de base S = 20 cm².

3. Donner l'expression de l'inductance de ce solénoïde et calculer sa valeur (prendre N = 200 spires)

EXERCICE N°3

On dose 10 mL d'une solution d'acide benzo \ddot{q} une Solution d'hydroxyde de sodium (soude) décimolaire (0,1 mol/L).

On note les résultats suivant :

V _b (mL)	0	1	2	3	5	6	8	9	9,5	9,8	9,9	10	10,1	11	12	14	16
рН	2,6	3,2	3,6	3,8	4,2	4,4	4,8	5,1	5,5	5,9	6,2	8,4	10,7	11,7	12	12,4	12,7

- 1. Schématiser et annoter le dispositif expérimental.
- 2. Ecrire l'équation-bilan de la réaction de dosage.
- 3. Construire la courbe pH = $f(V_b)$ échelle $\begin{cases} 1 \text{ cm pour } 1 \text{ mL} \\ 1 \text{ cm pour } 1 \text{ unité de pH} \end{cases}$
- 4.
- 4.1 A l'aide de la courbe, déterminer le point d'équivalence E et le point de demi-équivalence E'.
- 4.2 En déduire la concentration molaire volumique Ca de la solution d'acide benzoïque ainsi que la valeur du pKa du couple A/B.
- 5. Pour V_b = 3 mL de soude versée, faire l'inventaire des espèces et calculer leur concentration molaire volumique. Retrouver la valeur du pKa.
- 6. On dispose des indicateurs colorés suivants :

Indicateur	Zone de virage					
Alpha-naphtolphtaléine	7,5 – 8,6					
Phénolphtaléine	8,2 – 10,0					

- 6.1 Montrer que ces deux indicateurs colorés conviennent au dosage précédent.
- 6.2 Lequel est le plus précis ? Justifier votre réponse.

EXERCICE N°4

On veut établir la carté d'identité (nom, formule semi-développée, fonction chimique) d'un composé D de formule brute C₆H₁₂O₂. Pour cela, on réalise une série d'expériences.

1. Le corps D est obtenu par action chlorure d'acyle A sur un alcool B.

Donner la formule et le nom de l'autre corps obtenu au cours de cette réaction.

Donner les caractéristiques de cette réaction chimique.

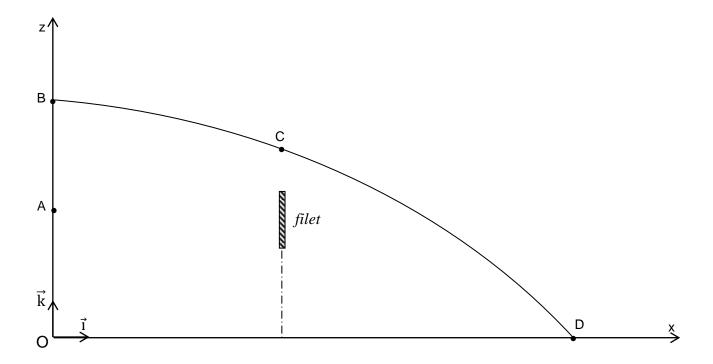
2. Le corps D subit ensuite une hydrolyse qui donne deux composés E et F. E est un acide carboxylique contenant en élément oxygène 53,3% de sa masse molaire.

Déterminer la formule semi-développée de E.

Donner le nom de E.

En déduire la formule brute de F.

3. On obtient un corps G par action de l'ion permanganate en milieu acide sur F. La solution de nitrate d'argent ammoniacal est sans action sur G.


Donner la formule semi-développée, le nom et la famille de F.

En déduire la formule semi-développée et le nom de G.

Ecrire l'équation de la réaction de l'ion permanganate sur le corps F.

Donner la formule semi-développée, la fonction chimique et le nom du composé D.

Feuille annexe à rendre avec la copie

