DIRECTION GENERALE DES ECOLES METHODISTES / DIRECTION DE LA PEDAGOGIE

2013-2014

ESSAI DU BACCALAUREAT

SESSION MAI 2014

SERIE: D

DUREE: 4h

COEFFICIENT: 4

EPREUVE DE MATHEMATIQUES

Cette épreuve comporte 3 pages numérotées 1/3, 2/3 et 3/3.

Exercice 1 (4 pts)

On considère la suite numérique u définie par : $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{2u_n + 3}{u_n} \end{cases}$

- 1°) Soit f la fonction définie sur]0; $+\infty$ [par $f(x) = \frac{2x+3}{x}$.
 - a) Etudier rapidement la fonction f et construire sa courbe (C_f) dans le plan muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$
 - b) Représenter sur l'axe des abscisses les termes u₀, u₁, u₂, u₃ et u₄ à l'aide de la courbe (C_f) et de la droite (D) d'équation y=x.
 - c) Que peut-on conjecturer quant à la convergence de la suite u?
- 2°) a) Démontrer que f([1; 5])⊂[1; 5].
 - b) En déduire au moyen d'un raisonnement par récurrence que :

$$\forall n \in \mathbb{N}, 1 \le u_n \le 5.$$

- 3°) Soit v la suite numérique définie par : $\forall n \in \mathbb{N}, v_n = \frac{u_n 3}{u_n + 1}$.
 - a) Démontrer que v est une suite géométrique de raison $-\frac{1}{3}$.
 - b) En déduire que \forall $n \in \mathbb{N}$, $v_n = (-1)^{n+1} \left(\frac{1}{3^n}\right)$.
- 4°) a) Exprimer u_n en fonction de v_n puis en fonction de n.
 - b) En déduire la limite de la suite u.

Exercice 2 (4 pts)

Le plan complexe est rapporté à un repère orthonormé (O, I, J) d'unité 2cm.

1°) On considère l'équation :

(E): $z \in \mathbb{C}$, $z^3 - 2iz^2 + 4(1+i)z + 16 + 16i = 0$. Vérifier que $z^3 - 2iz^2 + 4(1+i)z + 16 + 16i = (z+2)[z^2 - 2(1+i)z + 8(1+i)]$

- 2°) a) Déterminer les racines carrées de -8-6i
 - b) Résoudre dans \mathbb{C} l'équation : (E_1) : $z \in \mathbb{C}$, $z^2 2(1+i)z + 8(1+i) = 0$
 - c) En déduire les solutions de l'équation (E).

2013-2014

- 3°) Soient A, B et C les points d'affixes respectives -2; 4i et 2-2i.
 - a) Faire une figure.
 - b) Soit K le milieu de [BC]. On considère la similitude directe S de centre A, qui transforme B en K. Déterminer et construire l'image (C') du cercle (C) de diamètre [AB] par la similitude S.
 - c) Déterminer l'écriture complexe de S.
 - d) Déterminer l'angle orienté et le rapport de S.

Problème (12 pts)

Les parties A et B sont indépendantes.

Partie A

On se propose de chercher les fonctions dérivables $f : \mathbb{R} \to \mathbb{R}$ solutions de l'équation différentielle (E) : f'(x)+2f(x)=2x-1.

- 1°) Démontrer que la fonction g définie par g(x)=x-1 est solution de (E).
- 2°) Soit (E') l'équation différentielle : f'(x)+2f(x)=0.
 - a) Résoudre (E')
 - b) Soit k un nombre réel. Démontrer que les fonctions $f_k : \mathbb{R} \to \mathbb{R}$ telles que $f_k(x)=ke^{-2x}+x-1$ sont solutions de (E).
- 3°) a) Soit f une fonction dérivable sur \mathbb{R} . Démontrer que si f est solution de (E) alors f-g est solution de (E')
 - b) En déduire les solutions de (E).

Partie B

On considère la fonction numérique f définie sur \mathbb{R} par : $f(x)=e^{-2x}+x-1$.

Soit (C) la courbe représentative de f dans le repère orthonormé (O, I, J), d'unité graphique 3cm.

- 1°) a) Déterminer la limite de f en -∞
 - b) Déterminer la limite lorsque x tend vers $-\infty$ de $\frac{f(x)}{x}$
 - c) Interpréter graphiquement les résultats précédents
- 2°) a) Déterminer la limite de f en $+\infty$.
 - b) Démontrer que la droite (D) d'équation y=x-1 est asymptote oblique à (C) en +∞.
 - c) Etudier la position de (C) par rapport à (D).
- 3°) a) Pour tout nombre réel x, calculer f'(x)
 - b) Etudier le sens de variation de f.

Visitez votre bibliothèque www.leSavoir.net pour plus de documents

DIRECTION GENERALE DES ECOLES METHODISTES / DIRECTION DE LA PEDAGOGIE

2013-2014

- c) Dresser le tableau de variation de f
- 4°) a) Démontrer que l'équation : $x \in \left[\frac{\ln 2}{2}; +\infty\right[$, f(x)=0 admet une solution unique α .
 - b) Démontrer que $\alpha \in]0,79$; 0,80[.
 - c) Construire (C) et (D)
- 5°) Soit t un nombre réel supérieur à α.
 - a) Calculer l'aire A(t) de la partie du plan délimitée par la courbe (C), la droite (D) et les droites d'équations x=t et $x=\alpha$.
 - b) Exprimer la limite lorsque t tend vers $+\infty$ de A(t) en fonction de α .