Lycée Sainte Marie de Cocody Seconde C₁

Jeudi 27 Mars 2014 Durée : 1 heure 50 min

MATHEMATIQUES

EXERCICE 1 (5 points)

On donne deux vecteurs \vec{u} et \vec{v} tels que : $\|\vec{u}\| = 3$, $\|\vec{v}\| = 2$, et $Mes(\vec{u}, \vec{v}) = \frac{\pi}{4}$.

On pose $\overline{w} = \overline{u} + \overline{v}$ et $\overline{t} = 2\overline{u} - 3\overline{v}$.

1°. Construire une figure représentant les vecteurs \vec{u} , \vec{v} , \vec{w} et \vec{t} .

2°. Calculer $\vec{u} \cdot \vec{v}$, puis \vec{w} et \vec{t} .

3°. En déduire les normes des vecteurs \vec{w} et \vec{t} .

EXERCICE 2 (5 points)

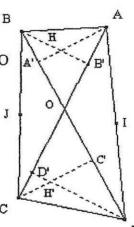
On considère un quadrilatère ABCD avec les diagonales (AC) et (BD) sécantes en O et l'on désigne par H et H' les orthocentres des des triangles OAB et OCD.

1°. Montrer que l'on a : $\overrightarrow{AC} \cdot \overrightarrow{BD} = \overrightarrow{HH} \cdot \overrightarrow{BD} = \overrightarrow{AC} \cdot \overrightarrow{HH}$.

2°. Soit I et J les milieux de [AD] et [BC].

Montrer que $\overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{IJ}$.

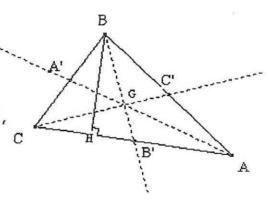
3°. En déduire que les droites (HH') et (IJ) sont perpendiculaire.



EXERCICE 3 (5 points)

ABC est un triangle tel que : AB = 7, BC = 5 et CA = 8. On note H le pied de la hauteur issue de B et G le centre de gravité du triangle.

- 1°. Calculer les angles du triangle. (On donnera des valeurs approchées au dixième de degré près.)
- 2º. Déterminer la valeur exacte du produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- 3°. En écrivant d'une autre manière le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$, calculer la longueur AH.
- **4°.** Exprimer \overrightarrow{AG} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} . En déduire la longueur \overrightarrow{AG} .
- 5° . Calculer la distance BB' ainsi que le rayon R du cercle circonscrit au triangle ABC.



EXERCICE 4 (5 points)

Le triangle ABC est isocèle en A, I est le milieu de [BC] et H est le projeté orthogonal de I sur (AC).

1°. Montrer que : $\overrightarrow{AI} \cdot \overrightarrow{BH} = \overrightarrow{AI} \cdot \overrightarrow{CH}$ (1).

2°. Montrer que : $\overrightarrow{AH} \cdot (\overrightarrow{HB} + \overrightarrow{HC}) = 0$.

En déduire que : $\overrightarrow{AH} \cdot \overrightarrow{BH} = \overrightarrow{AH} \cdot \overrightarrow{HC}$ (2).

3°. A l'aide de (1) et (2), prouver que $(\overrightarrow{AI} + \overrightarrow{AH}) \cdot \overrightarrow{BH} = 0$.

4°. En déduire que si J est le milieu de [IH] alors (AJ) est orthogonal à (BH).

