Année scolaire 2014-2015

DEVOIR DE PHYSIQUE CHIMIE

NIVEAU SECONDE C

Mardi 21/10/14

Durée: 2h

Exercice 1 (6 pts)

Un véhicule parcourt un trajet en deux phases. Au cours de la première phase, le véhicule roule à la vitesse V_1 =100 km /h pendant une durée Δt_1 =15 min et pour la deuxième phase, il roule à la vitesse V_2 =70 km/h pendant une durée Δt_2 =30 min.

- 1-Détermine en km la distance totale d parcourue par le véhicule au cours du trajet.
- 2-Détermine en heure(h) la durée totale Δt mise par le véhicule pour parcourir tout le trajet.
- 3-Détermine en km/h la vitesse moyenne Vm du véhicule sur tout le trajet.

Exercice 2 (7 pts)

Sur une table à coussin d'air, les différentes positions d'un point mobile M ont été relevées à intervalles de temps réguliers τ = 50 ms. (voir document).

- 1-Détermine la vitesse moyenne Vm du mobile entre les points Mo et Ma.
- 2-Détermine les vitesses instantanées V_1 ; V_3 et V_5 du mobile aux dates respectives t_1 ; t_3 et t_5 .
- 3-Représente les vecteurs—vitesses aux dates t_3 et t_5 à l'échelle 1 cm pour 0,25m/s. (on utilisera le document annexe).
- 4-Donne la nature du mouvement du point M? Justifie la réponse.

Document

t_0	t_1	t_2	t_3	t ₄	t ₅	t_6	t ₇
9	-			-		•	•••••••••••••••••••••••••••••••••••••••
M_0	$M_{\mathfrak{t}}$	M_2	M_3	M_4	M_5	M_6	M_7

Exercice 3 (7 pts)

On étalonne un ressort à spires non jointives à l'aide de différentes masses marquées et on note la pour chaque poids de la masse marquée, l'allongement Δl correspondant aux ressort. Les résultats de ces mesures sont consignés dans le tableau ci-:

P(N)	0	1	2	4	5	7
Al (cm)	0	2	4	8	10	14

On donne la longueur à vide du ressort $l_0 = 10$ cm et g = 10 N /kg.

- 1-Trace la courbe P=f (Δ I). Echelle : 1cm \rightarrow 1 N ; 1 cm \rightarrow 1cm.
- 2-Détermine la constance de raide r K du ressort.
- 3-Une masse m= 0,25 kg est susperdue à l'extrémité du ressort.
- 3-1) Détermine graphiquement pus par le calcul l'allongement du ressort.
- 3-2) Déduis la longueur du ressort.

Visitez votre bibliothèque www.leSavoir.net pour plus de documents Document annexe à rendre avec la copie t₇ t_0 t_1 t_2 t_3 $M_0 \quad M_1 \qquad M_2 \qquad \qquad M_3 \qquad \qquad M_4$ M_5 M_6 Document annexe à rendre avec la Copie t_6 t_7 t_0 t_1 t_2 t_3 t_4 $M_0 \quad M_1 \qquad M_2 \qquad M_3 \qquad M_4$ M_5 M_6 M_7 Document annexe à rendre avec la copie t_7 t_5 t_0 t_1 t_2 t_3 t_4 M_{i} M_{4} M_5 M_6 M_7 M_1 M_2 M_0 Document annexe à renche avec la copie t_1 t_2 t_3 M_7 M_5 M_6 M_4 M_2 M_3 M_1 M_0 Document annexe à rendre avec la Copie **1**7 t_1 t_2 t_3

 M_4

 M_5

 M_6

 M_7

 $M_0 M_1 M_2 M_3$