

MATHEMATIQUES

DEVOIR SURVEILLE

DATE: 02 / 12 / 2021

Classe: Tle D3

Durée: 1H00

Prof: OKOBE

Tout ce qui mérite d'être fait, mérite d'être bien fait...jusqu'au bout!

Soit g la fonction dérivable et définie sur \mathbb{R} par $g(x) = x^3 - 3x - 4$. $\forall \alpha \in]1; +\infty[$ $et 2,1 < \alpha < 2,2$, on a $g(\alpha) = 0$ $et \begin{cases} \forall x \in]-\infty; \alpha[,g(x) < 0 \\ \forall x \in]\alpha; +\infty[,g(x) > 0 \end{cases}$

On considère la fonction f définie par $f(x) = \frac{x^3 + 2x}{x^2 - 1}$, et on désigne par (C) sa représentation graphique.

- 1) a) Calcule les limites de f aux bornes de son ensemble de définition.
 - b) Interprète graphiquement les résultats obtenus.
- 2) a) Démontre que pour tout $x \in Df$, $f'(x) = \frac{xg(x)}{(x^2-1)^2}$
 - b) Dresse le tableau de variation de f.
- 3) On précise $\forall x \in \mathbb{R} \setminus \{-1.1\}$, la fonction f peut s'écrire sous la forme $f(x) = x + 2 + \frac{x+2}{x^2 1}$

Montre que la droite (D) d'équation y = x + 2 est une asymptote à (C) en $-\infty$ et en $+\infty$.

- 4) Soit h la restriction de f à [-2; -1[
- a) Justifie que h est une bijection de]-2;-1[vers un intervalle K à préciser.
- b) Donne le sens de variation de h^{-1} et dresse son tableau de variation.
- 5) Construis (D) et (C) dans un repère orthonormé (O, I, J) du plan. Unité graphique 1cm. On prendra $\alpha=2.2$