MINISTERE DE L'EDUCATION NATIONALE

REPUBLIQUE DE COTE D'IVOIRE

DREN ABIDJAN 1

UNION-DISCIPLINE-TRAVAIL

UNITE PEDAGOGIQUE COCODY 3

BACCALAUREAT BLANC N°1

Série: A1

Coéf.: 3

SESSION DE FEVRIER 2016

Durée: 3 h

EPREUVE:

MATHEMATIQUES

Cette épreuve comporte trois (3) pages numérotées 1/3, 2/3 et 3/3. La calculatrice scientifique est autorisée. Chaque élève recevra une feuille de papier millimétré.

EXERCICE 1 (5points)

- 1. Résoudre dans IR, l'équation : $-2x^2 + x + 1 = 0$.
- 2. Soit le polynôme $P(x) = -2x^3 + 5x^2 x 2$.
 - a. Calculer P(2).
 - b. Vérifier que, pour tout x élément de IR, $P(x) = (x-2)(-2x^2 + x + 1)$
- 3. Résoudre dans IR:
 - a. l'équation P(x) = 0
- b. l'inéquation P(x) > 0
- 4. Résoudre dans IR:
- a. $-2(\ln x)^3 + 5(\ln x)^2 \ln x 2 = 0$
- b. $-2(\ln x)^3 + 5(\ln x)^2 \ln x 2 > 0$

EXERCICE 2 (5points)

Une urne contient seize boules indiscernables au toucher, dont huit blanches numérotées de 1 à 8, cinq boules noires numérotées de 1 à 5 et trois vertes numérotées de 1 à 3.

On tire simultanément trois boules de l'urne.

Les tirages sont supposés équiprobables.

(On donnera les résultats sous la forme de fraction irréductible).

- 1. Déterminer le nombre de tirages possibles.
- 2. Soit A, l'événement : « deux boules et deux seulement sont noires » Justifier que la probabilité de l'événement A est $P(A) = \frac{11}{56}$.
- 3. On considère les événements suivants :
 - B: « une boule au moins est blanche»
 - C: « les trois numéros sont pairs»
 - D: « les trois boules sont de même couleur »
 - $E:\ll$ les boules sont de même couleur et portent des numéros pairs \gg

Calculer les probabilités P(B), P(C), P(D) et P(E).

www.leSavoir.net

4. On suppose que :

- le tirage d'une boule blanche rapporte 2 points (+2)
- le tirage d'une boule noire enlève 1 point (-1)
- le tirage d'une boule verte rapporte 0 point (0)

Soit X la variable aléatoire qui à tout tirage de 3 boules associe le nombre de points obtenus.

a. Justifier que les valeurs prises par X sont : -3; -2; -1; 0; +1; +2; +3; +4 et +6.

b. Reproduire le tableau ci-dessous puis compléter :

χ_i	-3	-2	-1	0	+1	+2	+3	+4	+6
p_i		30			120			. 84	
		560			560			560	

c. Calculer l'espérance mathématique E(X) et la variance V(X) de la variable aléatoire X.

EXERCICE 3 (10points)

PARTIE A

On considère la fonction numérique, définie sur IR-{1} par $f(x) = \frac{-x^2 + 5x - 2}{2x - 2}$.

(C) désigne la représentation graphique de f dans le repère orthonormé (O,I,J).

(unité graphique : Icm).

- 1. a. Calculer la limite de f(x) quand x tend vers 1 par valeurs inférieures et la limite de
- f(x) quand x tend vers 1 par valeurs par valeurs supérieures. Interpréter le résultat.
 - b. Calculer la limite de f en $-\infty$ et la limite de f en $+\infty$.
- 2. a Démontrer que : pour tout $x \in IR \{1\}$, $f(x) = \frac{-x}{2} + 2 + \frac{1}{x-1}$
 - b. Justifier que la droite (Δ) d'équation $y = \frac{-x}{2} + 2$ est asymptote à (C).
- 3. Démontrer que le point $A(1; \frac{3}{2})$ est un centre de symétrie de (C).
- 4. Justifier que : pour tout $x \in IR \{1\}$, $f'(x) = \frac{-1}{2} \frac{1}{(x-1)^2}$.
- 5. a Etudier le sens de variation de f.
 - b. Dresser le tableau de variation de f.
- 6. a Recopier et compléter le tableau de valeurs suivant :

X	-2,5	-1	0	2	3,5
f(x)					
(Arrondi					
d'ordre 1)			3		

- b. Tracer les asymptotes de (C) dans le repère (O,I,J).
- c. Construire (C) dans le même repère.

www.leSavoir.net

PARTIE B

On considère la fonction numérique définie sur $]1;+\infty[$ par $G(x)=\ln(x-1)$

- 1. Démontrer que G est une primitive de la fonction $g: x \mapsto \frac{1}{x-1}$
- 2. Déduire des questions B-1 de la partie B et A-3. a de la partie A une primitive F de la fonction f sur que $]1;+\infty[$.
- 3. Calculer l'aire \mathcal{M} en Cm^2 de l'aire de la partie du plan délimitée par (OI); (C) et les droites d'équations x = 2 et x = 3,5.