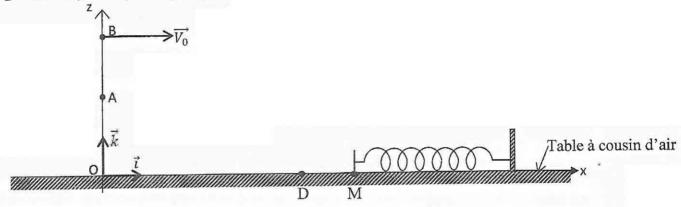
BACCALAUREAT BLANC REGIONAL SESSION AVRIL 2016 Coefficient: 4 Durée: 3 h

PHYSIQUE - CHIMIE

SERIE: D

Cette épreuve comporte quatre (04) pages numérotées 1/4, 2/4, 3/4 et 4/4.


EXERCICE 1: (5points)

Les parties I et II sont indépendantes. On prendra g = 10 m.s⁻².

I. Première phase

Un joueur lance une balle de masse m=100g verticalement vers le haut d'un point A situé à une hauteur

 $h_A = OA = 1,80$ m du sol. La balle atteint le sommet de sa trajectoire au point B tel que $h_B = OB = 2,75$ m. (voir figure).

- 1. Déterminer la vitesse v_A avec laquelle la balle a été lancée en A.
- 2. Établir l'expression de la vitesse v(t) du centre d'inertie G de la balle dans le repère (O, \vec{k}) .
- 3. Déterminer la durée t_{AB} de ce centre d'inertie G sur le trajet AB

II. Deuxième phase

Il frappe la balle quand celle-ci est au point B et lui communique une vitesse \vec{V}_O horizontale. La balle arrive au point D avec une vitesse V_D et glisse vers le point M où elle a une vitesse V_M pratiquement égale à celle au point D. Elle rencontre un ressort à spires non jointives de constante de raideur K et reste solidaire à ce ressort. L'ensemble {balle – ressort} effectue alors une oscillation complète pendant 157ms et le ressort a été comprimé d'une distance a=20cm.

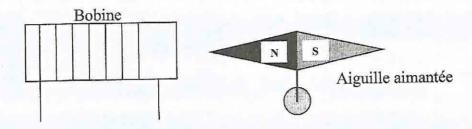
1- Que représente les valeurs : 157ms et 20cm.

2- En déduire la pulsation propre de cette oscillation.

- 3- Déterminer l'équation horaire du mouvement $x(t) = X_m \cos(\omega_0 t + \varphi)$ en prenant pour origine des espaces et des dates l'instant où la balle rencontre le ressort.
- 4- Déterminer la constante de raideur K du ressort.

5- En déduire l'énergie mécanique de cet oscillateur.

6- En utilisant la conservation de l'énergie mécanique, déterminer la vitesse V_M qui correspond à la vitesse maximale.


7- En utilisant Le théorème de l'énergie cinétique, déterminer la vitesse V_0 communiquée à la balle au point B.

EXERCICE 2 : (5points) : Les deux parties A et B sont indépendantes

PARTIE A

Une bobine de longueur ℓ comportant 498 spires a un diamètre d = 4cm.

Cette bobine parcourue par un courant I crée un champ magnétique $\overrightarrow{B_0}$, une aiguille aimantée placée devant une des faces de cette bobine s'oriente comme l'indique le schéma ci-dessous.

Reproduire le schéma de la bobine ci-dessus et:

- 1- Indiquer les faces de cette bobine.
- 2- Représenter le champ magnétique $\overrightarrow{B_0}$ créé à l'intérieur de cette bobine (direction et sens).
- 3- Représenter quelques lignes de champ et leur sens à l'intérieur de cette bobine.
- 4- Indiquer le sens du courant qui traverse cette bobine.

PARTIE B

On fait varier l'intensité I du courant traversant cette bobine. On note pour chaque valeur de I la valeur B_o du champ magnétique créé au centre O de la bobine. Les résultats des mesures sont consignés dans le tableau ci-dessous.

B _o (mT)	0,625	1,250	1,875	2,500	3,125	3,750	4,375	5,00
I(A)	0,50	1,00	1,50	2,00	2,50	3,00	3,50	4,00

- 2.1. Tracer le graphe $B_o = f(I)$. Echelle : 2 cm \iff 1 mT et 3 cm \iff 1 A.
- 2.2. Montrer que B_0 est de la forme $B_0 = k.I.$
- 2.3. Déterminer graphiquement k.
- Rappeler l'expression du champ magnétique B₀ en fonction de μ₀, n (nombre de spires par mètre) et I.
- 2.5. Déduire de tout ce qui précède la valeur de n. On donne : $\mu_0 = 4\Pi \cdot 10^{-7} \text{ SI}$.
- 2.6. Calculer la valeur de la longueur ℓ de cette bobine. Peut-on considérer cette bobine comme un solénoïde ? Justifier la réponse.

EXERCICE 3: (5 points)

Un groupe d'élèves de la classe de terminale D, cherche à identifier un acide carboxylique se trouvant dans le laboratoire de leur lycée. Pour cela le groupe fait dissoudre 7,43 g de l'acide, noté AH, dans un litre d'eau distillée. De la solution ainsi préparée, il prélève un volume $V_A = 20 \text{mL}$, qu'il dose avec une solution d'hydroxyde de sodium de concentration $C_B = 0,1 \text{mol.L.En}$ notant V_B le volume de la solution d'hydroxyde de sodium versé dans la solution d'acide, il obtient le tableau ci-dessous dans les conditions standard :

F. () 1	10	14	0	3	6	10	112	15	17	19	19,5	20	20,5	21	23	25	27	30
V _B (mL)	U	11	1	3	0	10	12	10	11		-		11	11.3	118	12	121	12,2
На	3	3,7	4	4,2	4,5	4,9	5,1	5,3	5,6	6,2	6,5	8,7	11	11,3	11,0	12	12,1	12,2

- 1. Faire le schéma annoté du dispositif expérimental permettant de réaliser le dosage de la solution d'acide.
- 2. Ecrire l'équation de la réaction entre l'acide AH et la solution d'hydroxyde de sodium.
- 3. Tracer la courbe pH=f(V_b) (à rendre avec la feuille de copie).

Echelle : en abscisses 1cm pour 2mL ; en ordonnées 1cm pour une unité de pH

- 4. Déterminer graphiquement les coordonnées du point d'équivalence E.
- 5. Déterminer la concentration de la solution de l'acide carboxylique AH.
- 6. En déduire La masse molaire de l'acide AH.
- Sachant que la formule générale des acides carboxyliques est C_nH_{2n}O₂; déterminer la formule brute de cet acide.
- 8. Déterminer graphiquement les coordonnées du point de demi-équivalence E'.
- 9. En déduire le pKa du couple AH/A-
- 10. Identifier l'acide AH à l'aide des informations du tableau ci-dessous.
- 11. Ce résultat est-il en accord avec la formule brute trouvée à la question 7.?

Acide	pKa
carboxyliques Acide benzoïque	4,20
Acide propanoïque	4,90
Acide méthanoïque	3,80

Direction Régionale de l'Education Nationale de Korhogo

EXERCICE 4: (5points)

La combustion complète, par l'oxygène de l'air, de 0,1mole d'un monoalcool saturé B, a entrainé la formation de 6,72L de gaz carbonique dans les CNTP où V_m = 22,4L/mol, et de 7,2g d'eau.

Données des masses molaires en g/mol: C: 12; H: 1 et O: 16.

- 1- Ecrire l'équation bilan de cette combustion.
- 2- En déduire la formule brute de cet alcool.
- 3- Donner la formule semi-développée, le nom et la classe de chacun des isomères possibles de B.
- 4- On réalise l'oxydation ménagée de chacun des isomères possibles de B par une solution de permanganate de potassium (MnO_4^-/Mn^{2+}) en milieu acide. On obtient au total trois produits notés B_1 ; B_2 et B_3 . Pour tester ces produit on dispose de trois réactifs : une solution de 2,4-DNPH ; une solution du réactif de Schiff incolore et une solution du bleu de bromothymol.
 - 4.1. Quel rôle joue chacun de ces réactifs?
 - 4.2.Donner la formule semi-développée et le nom de chacun des produits B_1 ; B_2 et B_3 . Sachant que :
 - ❖ B₁ donne un test positif avec la 2,4-DNPH et avec le réactif de Schiff mais est sans action sur le bleu de bromothymol;
 - ❖ B₂ donne un test positif avec la 2,4-DNPH mais est sans action sur le bleu de bromothymol et le réactif de Schiff;
 - ❖ B₃ donne un test positif avec le bleu de bromothymol mais est sans action sur la 2,4-DNPH et avec le réactif de Schiff.
 - 4.3. Ecrire l'équation bilan de l'oxydation ménagée donnant le produit B2.
- 5- La déshydratation intramoléculaire de chacun des isomères de B au contact de l'alumine (Al_2O_3) conduit à un seul composé organique A.
 - 5.1. Quelle est la fonction chimique du composé organique A?
 - 5.2. Ecrire l'équation bilan de cette réaction.
 - 5.3. Nommer le composé organique A.