DEVOIR RÉGIONAL DE MATHÉMATIQUES NIVEAU TERMINALE C

24 janvier 2023 14h à 18h

Cette épreuve comporte trois pages numérotées 1/3, 2/3 et 3/3. L'utilisation de la calculatrice scientifique est autorisée.

Exercice 1 (2 points)

Écris sur ta feuille de copie le numéro de chaque proposition du tableau ci-dessous suivi de **Vrai** si la proposition est vraie ou de **Faux** si elle est fausse.

N°	Propositions			
1.	f est une fonction définie sur un intervalle ouvert]a; b[. Si f est strictement croissante et majorée sur]a; b[, alors $\lim_{x\to b} f(x) = +\infty$.			
2.	f est une fonction deux fois dérivable sur un intervalle K, a un élément de K et (C) la courbe représentative de f dans le plan muni d'un repère. Si f'' s'annule en a , le point $A(a; f(a))$ est un point d'inflexion de (C) .			
3.	Soit (D) une droite, F un point n'appartenant pas à (D) et H le projeté orthogonale de F sur (D). L'ensemble des points M du plan tels que $\frac{MF}{MH} = \ln(2e)$ est une hyperbole.			
4.	n est un entier naturel supérieur ou égal à 1 et f est une fonction définie n fois derivable sur un intervalle ouvert a ; b [. $f^{(n)}$ est une primitive sur a ; b [de $f^{(n-1)}$.			

Exercice 2 (2 points)

Pour chacun des énoncés incomplets du tableau ci - dessous, quatre réponses A, B, C et D sont proposées dont une seule permet d'obtenir une affirmation juste.

Écris le numéro de l'énoncé incomplet suivi de la lettre correspondant à la bonne réponse.

N°	ÉNONCÉS INCOMPLETS	RÉPONSES		
IN	ENUNCES INCOMPLETS			
1.	Si ABC un triangle équilatéral et O le milieu du segment [BC], alors pour tout point M du plan, le nombre réel $2MA^2 - MB^2 - MC^2$ est égal à	Α	$-OB^2 - OC^2.$	
		В	$20A^2 - 0B^2 - 0C^2 - 4\overrightarrow{OA}.\overrightarrow{OM}.$	
		C	$20A^2 - 0B^2 - 0C^2 - 4\overrightarrow{MO}.\overrightarrow{OA}.$	
		D	$-4\overrightarrow{OA}.\overrightarrow{OM}.$	
2.	Dans le plan muni d'un repère orthonormé (O, I, J), la parabole d'équation réduite $y^2 = -4x$ a pour foyer le point F de coordonnées	A	(2;0).	
		В	(0;1).	
		С	(-1;0).	
		D	(0;-2).	
3.	Le plus petit entier naturel qui admet 8 diviseurs entiers naturels est	A	2^7 .	
		В	30	
		C	24.	
		D	16.	
4.	La fonction $x \mapsto \sin 5x$ est une primitive sur \mathbb{R} de la fonction	A	$x \mapsto 5\cos 5x$.	
		В	$x \mapsto -5\cos 5x$.	
		С	$x \mapsto -\frac{1}{5}cos5x.$	
		D	$x \mapsto \frac{1}{5} \cos 5x.$	

Exercice 3 (3 points)

DRENA BOUAKÉ 2

L'espace est muni d'un repère orthonormé $(0; \vec{i}, \vec{j}, \vec{k})$.

On considère les plans (P) et (Q) d'équations cartésiennes respectives

APFC BOUAKÉ 2

$$4x - y + z - 7 = 0$$
 et $x - y - 2z - 4 = 0$,

et la droite (D) de représentation paramétrique : $\{ y = -2 + 3t, t \in \mathbb{R}. \}$

- 1) 1-a) Justifie que les plans (P) et (Q) sont sécants.
 - 1-b) Démontre que l'intersection (D') des plans (P) et (Q) est une droite dont une

représentation paramétrique est $\begin{cases} x = 1 - u \\ y = -3 - 3u, u \in \mathbb{R}. \\ z = u \end{cases}$

- 2) Justifie que la droite (D) est parallèle au plan (P).
- 3) On admet que la droite (D) est parallèle au plan (Q).

Déduis, de tout ce qui précède, la position relative des droites (D) et (D').

Exercice 4 (3,5 points)

n est un entier supérieur ou égal à 4.

On considère dans l'ensemble \mathbb{N} des entiers naturels, les nombres A, B et C, écrits en base n:

$$A = \overline{20}^n$$
; $B = \overline{32}^n$; $C = \overline{1300}^n$.

- 1) 1-a) Justifie que $A \times B = C$ si et seulement si n est solution dans \mathbb{N} de l'équation (E) : $n^3 - 3n^2 - 4n = 0.$
 - 1- b) Détermine la valeur de n pour laquelle $A \times B = C$.
- 2) On suppose par la suite que n = 4 et on considère l'entier naturel D qui s'écrit 5xy dans le système décimal.
 - 2-a). Justifie que D est divisible par 4 si et seulement si $2x + y \equiv 0[4]$.
 - 2-b) Détermine pour quelles valeurs de x et y D est divisible par 4.

Exercice 5 (4,5 points)

Soit n un entier naturel supérieur ou égal à 1 et f_n la fonction définie sur $[0; +\infty[$ par :

$$\begin{cases} f_n(x) = x^{2n} (1 - \ln x)^2, \text{ si } x > 0 \\ f_n(0) = 0 \end{cases}$$

On désigne par (C_n) la courbe représentative de f_n dans le plan muni d'un repère orthonormé (O, I, J).

- 1) On admet que pour tout nombre réel $\alpha > 0$, on a : $\lim_{\substack{x \to 0 \\ >}} x^{\alpha} \ln x = 0$.
 - 1-a) Justifie que f_n est continue en 0.
 - 1- b) Justifie que la courbe (C_n) admet en son point d'abscisse 0, une tangente parallèle à 1'axe (OI).
 - 1-c) On admet que : $\lim_{x \to +\infty} f_n(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f_n(x)}{x} = +\infty$.

Interprète graphiquement ces résultats.

2) 2-a) On admet que f_n est dérivable sur $]0; +\infty[$.

Justifie que : $\forall x \in]0; +\infty[, f'_n(x) = 2x^{2n-1}(1 - \ln x)(n - 1 - n \ln x)].$

- 2-b) Détermine les variations de f_n sur]0; $+\infty$ [.
- 2-c) Vérifie que : $f_n\left(e^{\frac{n-1}{n}}\right) = \frac{1}{n^2}e^{2n-2}$.
- 2-d) Dresse le tableau de variation de f_n .
- 3) On admet que : $\forall x \in]0; +\infty[, f_{n+1}(x) f_n(x) = x^{2n}(1 \ln x)^2(x+1)(x-1)$.
 - 3-a) Démontre que toutes les courbes (C_n) passent par trois points fixes.
 - 3-b) Déduis-en la position relative des courbes (C_n) et (C_{n+1}) .

Exercice 6 (5 points)

Un centre sportif communal a été construit sans la piscine initialement prévue. Deux plans de piscine P₁ et P₂ avaient été réalisés dont l'un devrait être choisi. Suite à de nombreux aménagements sur le centre, l'espace réservée à la piscine s'est réduit à un terrain ayant la forme d'un rectangle ABCD tel que AB=10 m et AD=8 m.

Afin d'encourager l'engouement de nombreux jeunes de sa commune aux compétitions de natation, l'actuel conseil municipal a arrêté à sa dernière session de construire la piscine.

Une étude liée aux données de l'espace restant a montré que :

- Selon le Plan P₁: le bord de la piscine est l'ensemble (E) des points M du plan du sol tels que $\|2\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC}\| = AD$.
- Selon le Plan P₂: Dans le plan du sol muni du repère orthonormé direct $(O, \frac{1}{AB} \overrightarrow{AB}, \frac{1}{AD} \overrightarrow{AD})$ où O est le centre du rectangle ABCD, le bord de la piscine est l'ensemble (F) des points M (x,y) du plan vérifiant l'équation : $16x^2 + 25y^2 = 400$.

Certain membre du conseil estime que c'est le plan P₁ qui est réalisable sur l'espace restant, d'autres pensent plutôt au plan P₂.

Soucieux d'éviter des dépenses supplémentaires liées aux honoraires d'un technicien pour trancher, un membre du conseil municipal vient te poser le problème.

A l'aide d'une production argumentée basée sur tes connaissances mathématiques, rédige la réponse que tu lui donneras.