BACCALAURÉAT BLANC

SESSION: FÉVRIER 2023

Coefficient: 5

Durée: 4 h

MATHEMATIQUES

Série C

Cette épreuve comporte trois (03) pages numérotées 1/3, 2/3 et 3/3. Toute calculatrice scientifique est autorisée. Le candidat utilisera deux (02) feuilles de papier millimétré.

Exercice 1 (2 points)

Ecris sur ta copie le numéro de l'affirmation suivi de VRAI si l'affirmation est vraie ou FAUX si celle-ci est fausse.

No	Affirmations			
1	Dans le repère orthonormé $(O; i; j; k)$ de l'espace, une représentation paramétrique de la droit passant par les points $A(1;0;1)$ et $B(0;1;1)$ est donnée par : $x=1-t$; $y=t$ et $z=1$			
2	Si a un nombre réel tel que $0 < a < 1$, alors la fonction $x \mapsto a^x$ est strictement croissante sur \mathbb{R} .			
3	La fonction $x \mapsto \ln(\frac{e^x + 1}{2})$ est la primitive sur \mathbb{R} de la fonction $x \mapsto \frac{1}{1 + e^{-x}}$ qui s'annule en 0.			
4	L'ensemble solution de l'équation $x \in \mathbb{R}$, $e^x = 1 - \sqrt{2}$ est l'ensemble vide.			

Exercice 2 (2 points)

Pour chaque énoncé du tableau, trois réponses A, B et C sont proposées dont une seule est juste. Ecris, sur ta feuille de copie, le numéro de l'énoncé suivi de la lettre correspondant à la bonne réponse.

N°	Enoncés		Réponses
	$\operatorname{Si} f$ est une fonction continue et strictement	A	f ne s'annule pas entre a et b
1	croissante sur [a;b] et en plus $f(a) \times f(b) < 0$	В	f s'annule une seule fois entre a et b
	alors	С	f s'annule au moins une fois entre a et b
2		A	$-\frac{\pi}{5}$
	Un argument du nombre complexe $-2e^{i\frac{\pi}{5}}$ est	В	$\frac{\pi}{5}$
		С	$\frac{6\pi}{5}$
	f est une fonction telle que:	A	0
3	$\forall x \in]0; +\infty[, \frac{5}{x} \le -3 + f(x) \le \frac{5x+3}{x} - 5 .$ La limite de f en $+\infty$ est égale à	В	-3
		С	3
	Dans l'espace muni du repère orthonormé $(O; \vec{i}; \vec{j}; \vec{k})$ on considère le plan (P) d'équation	A	$\vec{v}(\frac{-1}{2};2;1)$
4	cartésienne : $2x + y - z + 7 = 0$	В	u(2;1;-1)
	Un plan perpendiculaire à (P) a pour vecteur	С	
	normal		$\frac{1}{w(\frac{1}{2};2;-1)}$

Exercice 3 (3 points)

Soit ABC un triangle tel que AB = 7 BC = 4 et AC = 5. On désigne par I le milieu du segment [BC]

1. On admet que pour tout point M du plan $MB^2 + MC^2 = 2MI^2 + \frac{BC^2}{2}$.

Justifie que $AI = \sqrt{33}$.

- 2. Soit(Δ) l'ensemble des points M du plan vérifiant $2MA^2 MB^2 MC^2 = 58$.
 - a) Vérifie que I appartient $\grave{a}(\Delta)$.
 - b) Détermine et construis (Δ) .
- 3. On désigne par G le barycentre des points pondérés (A,-1), (B,1) et (C,1).
 - a) Démontre que le quadrilatère ABGC est un parallélogramme.
 - b) Détermine et construis (Γ) l'ensemble des points M du plan vérifiant $MA^2 MB^2 MC^2 = 25$.

Exercice 4 (3 points)

Dans le plan complexe rapporté à un repère orthonormé direct $(O; \vec{u}; \vec{v})$ d'unité 2cm, on considère l'application f du plan dans le plan qui à tout point M d'affixe z associe le point M' d'affixe z' tel que : $z' = z^2 - (3-i)z + 4 - 3i$.

On pose z = x + iy et z' = x' + iy' où x; y; x'; et y' sont des nombres réels.

- 1. Détermine les points M d'affixe z tels que M'=O.
- 2. Exprime x' et y' en fonction de x et y.
- 3. a) Démontre que lorsque M' décrit l'axe des ordonnées, le point M décrit la courbe (C) d'équation : $x^2 y^2 3x y + 4 = 0$.
 - b) Justifie que : $M(x; y) \in (C)$ si et seulement si $\frac{-(x-\frac{3}{2})^2}{2} + \frac{(y+\frac{1}{2})^2}{2} = 1$.
 - c) Détermine la nature de (C) et précise son centre I.
 - d) Détermine l'excentricité, un sommet, un foyer et une asymptote de (C) dans le repère $(I; \vec{u}; \vec{v})$.
- 4. Trace la courbe (C).

Exercice 5 (5 points)

Soit la fonction f définie sur $[0;+\infty[$ par : $\begin{cases} f(x) = x^2 \ln\left(\frac{x}{x+1}\right) & \text{si } x > 0 \\ f(0) = 0 \end{cases}$

On désigne par (C) sa courbe représentative dans le plan muni d'un repère orthonormé direct (O;I;J) d'unité 2cm.

- 1. a) Démontre que f est continue en 0.
 - b) Etudie la dérivabilité de $\,f\,$ en $0\,$.
- 2. a) Démontre que pour tout t élément de $]0; 1[, f(\frac{1}{t}-1) = \frac{(1-t)^2}{t} \times \frac{\ln(1-t)}{t}.$
 - b) On admet que : $\lim_{t\to 0} \frac{\ln(1-t)}{t} = -1$. A l'aide du changement de variable $t = \frac{1}{1+x}$, démontre que $\lim_{x\to +\infty} f(x) = -\infty$.

- 3. On admet qu'au voisinage de 0, on a : $\ln(1-t) = -t + \frac{1}{2}t^2 + t^2\varepsilon(t)$ avec $\lim_{t\to 0}\varepsilon(t) = 0$. (1)
 - a) Démontre que pour tout nombre réel strictement positif $x: f(x) + x \frac{1}{2} = \left(\frac{1-t}{t}\right)^2 \ln(1-t) + \frac{1}{t} \frac{3}{2}$ avec $t = \frac{1}{1+x}$.
 - b) En utilisant la relation (1), démontre que la droite (D) d'équation $y = -x + \frac{1}{2}$ est asymptote à (C) en $+\infty$.
- 4. On considère la fonction numérique g définie sur l'intervalle $]0;+\infty[$ par $:g(x)=2\ln\left(\frac{x}{x+1}\right)+\frac{1}{x+1}$.
 - a) Etudie le sens de variation de g.
 - b) On admet que : $\lim_{x\to 0} g(x) = -\infty$ et $\lim_{x\to +\infty} g(x) = 0$. Démontre que : $\forall x \in]0; +\infty[, g(x) < 0$.
- 5. On admet que f est dérivable sur $]0;+\infty[$.
 - a) Démontre que : $\forall x \in]0; +\infty[, f'(x) = xg(x).$
 - b) Déduis-en le sens de variation de f.
 - c) Dresse le tableau des variations de f.
- 6. Construis la courbe (C).

Exercice 6 (5 points)

Pour faire fructifier ses affaires, Konaté, un jeune de ta commune décide d'ouvrir le coffre-fort contenant des objets précieux que lui a légués son défunt père anciennement professeur de Mathématiques.

Après avoir ouvert le coffret contenant le coffre-fort, il découvre une enveloppe contenant une feuille sur laquelle sont données des indications sur le code de déverrouillage du coffre-fort.

Sur la feuille, on pouvait lire ceci :

- Le code de déverrouillage est un nombre entier naturel de quatre chiffres, multiple de 99.
- Le chiffre des milliers est le chiffre des unités du nombre 3²⁰²³
- Le chiffre des centaines est la plus petite solution dans N de l'équation $(E): 4x + 5 \equiv 0$ [7]

Ne sachant comment exploiter ces informations, il sollicite son neveu Daouda en classe de Terminale C dans un Lycée de ta commune qui à son tour te soumet le problème.

A l'aide d'une production argumentée, basée sur tes connaissances de Terminale C, donne une réponse à Konaté.