

Av. 16 Rue 38 Treichville 01 BP 806 Abidjan 01

Répolique de Cote Alvoire

Union - Discipline - Travail

Ministère de l'Education Nationale

Baccalauréat Blanc Juillet 2011

SERIE C:

Coefficient: 5

DUREE: 3 heures

Epreuve de Osciences Physiques

Exercice 1

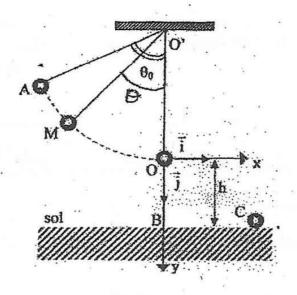
Un pendule simple est constitué d'un fil inextensible de masse négligeable, de longueur L=62,50 cm à l'extrémité duquel est fixée une bille supposée ponctuelle de masse m=10 g. On écarte le pendule de sa position d'équilibre d'un angle $\Theta=60^\circ$ et on l'abandonne sans vitesse initiale en A.

1.

- 1.1.En utilisant le théorème de l'énergie cinétique, que vous énoncerez, exprimez la vitesse V_M de la bille au point M en fonction de g, L, Θ et Θ_0
- 1.2. Calculer V_M pour $\Theta = 30^\circ$
- 1.3. En déduire l'expression de la vitesse V_0 de la bille au point 0 en fonction de g, L et Θ .

2.

- 2.1. En utilisant le théorème du centre d'inertie, que vous énoncerez, exprimez l'intensité de la tension du fil T_M en M en fonction de m, g, Θ et Θ_0
- 2.2.Calculer sa valeur pour $\Theta = 30^{\circ}$
- 2.3. En déduire l'expression de l'intensité T₀ du fil au point 0, en fonction de m, g et Θ. Calculer sa valeur

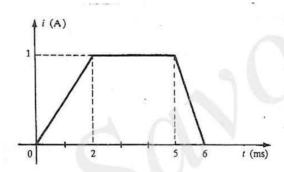

3.

- Au passage de la bille par le point 0, le fil casse. La bille n'est plus soumise qu'à l'attraction de la pesanteur.
- 3.1. Etablir les équations horaires du mouvement de la bille dans le système d'axe (0x, 0y)
- 3.2. En déduire l'équation numérique de sa trajectoire
- 3.3. Calculer l'abscisse X_C du point de chute C de la bille sur le sol horizontal : OB = h = 1,80 m

Le vecteur vitesse V_C fait avec le sol un angle $\alpha = (i, V_C)$

- 4.1. Détermine les coordonnées Vcx et Vcy du vecteu V_C
- 4.2. Calculer la valeur de l'angle α
- 4.3. Exprimer puis calculer sa vitesse Vc au point de chute de la bille. On donne : $g = 10 \text{ ms}^{-2}$.

www.leSavoir.net


Exercice 2

Un solénoïde de longueur $\ell = 40$ cm, comportant N = 500 spires, de rayon R = 20 mm est parcouru par un courant I = 5 A.

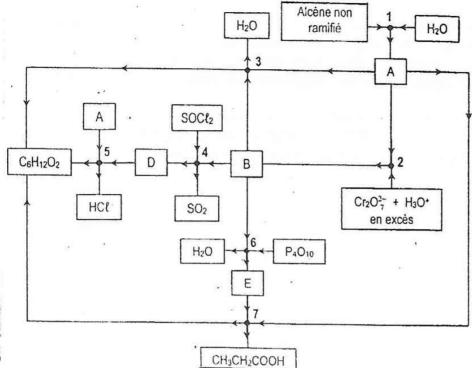
On donne la permittivité magnétique du vide :

 $\mu_0 = 4 \pi \times 10^{-7} \text{ u.S.I}$

- 1) Calculer le champ magnétique créé au centre O du solénoïde par le passage du courant.
- 2) a- En supposant le champ magnétique uniforme à l'intérieur du solénoïde, calculer le flux propre de ce solénoïde.
 - b-Exprimer l'inductance L de la bobine en fonction des données et calculer sa valeur
- 3) Le solénoïde est à présent parcouru par un courant d'intensité variant en fonction du temps selon la figure ci-dessous.

- a- Déterminer la force électromotrice auto-induite e = f(t) qui apparaît aux bornes de la bobine pour chacune des trois phases.
- b- Représenter graphiquement e = f(t) pour t compris entre 0 et 6 secondes.

Exercice 3


La synthèse d'un composé organique de formule brute C₆H₁₂O₂ est schématisée sur l'organigramme suivant.

Les fléches qui arrivent en un point renforcé (-> 0-) indiquent les réactifs qui participent à la réaction considérée; celles qui en partent (-0->) donnent les produits formés.

La réaction 1 donne deux produits A et A'. Ici on considère le produit A obtenu en minorité. On veut déterminer les composés notés A, B, D, E et l'alcène non ramifié.

Données:

- Ion dichromate en milieu acide (Cr₂O²⁻₇ + H₃O⁺)
- Chlorure de thionyle, chlorurant puissant : SOC₆₂
- Décaoxyde de téraphosphore (déshydratant) : P₄O₁₀

- 1. Donner:
- 1.1.Le nom de chacune des réactions : 3, 4, 5 et 6.
- 1.2.Les caractéristiques des réactions 3 et 5.
- 2. Reproduire et remplir le tableau ci-dessous.

Composés	Formule semi-développée	Fonction chimique	Nom officiel	
A			L W 0	
В				
C			W	
D				
E				

- 3. Donner le nom et la formule semi-développée de :
- 3.1. L'alcène utilisé
- 3.2.La molécule organique synthétisée de formule brute C₆H₁₂O₂
- 4. Ecrire les équations-bilan des réactions 4 et 5

Exercice 4

On donne (en g.mol⁻¹) les masses molaires atomiques suivantes :

M(H) = 1; m(C) = 12; M(N) = 14

On introduit 8,1 g d'une monoamine primaire, saturée et non cyclique dans de l'eau distillée de façon à obtenir 1 l de solution.

On prélève 20 mL de la solution basique préparée que l'on dose progressivement par une solution d'acide chlorhydrique de concentration molaire $C_A = 0,20 \text{ mol } L^{-1}$

On obtient le tableau de résultats suivant :

VA (cm ³)	0	1	2	3	6	10	12	15	16
PH	11,9	11,3	11,1	11.0	10,9	10,7	10,6	10,4	10,3

17	18	18,5	19	19,5	20	22	24	26
9,8	6,3	4,0	3,0	2,5	2,2	2,0	1,9	1,8

www.leSavoir.net

1- Tracer la courbe de variation du pH en fonction du volume d'acide versé Echelles obligatoires : en abscisses : 1 cm pour 2 cm³

: en ordonnées : 1 cm pour une unité de pH.

- 2- a) Déterminer les coordonnées du point d'équivalence et en déduire une valeur approchée de la concentration molaire volumique de la solution basique.
 - b) Déterminer la masse molaire, la formule développée et le nom de l'amine
 - c) Déduire de la courbe, le pka, du couple acide/acide base auquel appartient l'amine considérée
- 3- a) Calculer les concentrations molaires volumiques de toutes les espèces chimiques présentes dans le mélange lorsque le volume d'acide chlorhydrique versé est de 10 cm³
- b) Vérifier, par le calcul, que le pka, du couple acide-base auquel appartient l'amine est égal à 10,8.