Direction des Examens et Concours * Direction des Examens et Concours * Direction des Examens et Concours

BACCALAUREAT

SESSION 2005

Coefficient: 5

Durée: 4 heures

MATHEMATIQUES

Série C

Cette épreuve comporte trois pages numérotées 1/3, 2/3 et 3/3. Chaque candidat recevra deux (02) feuilles de papier millimétré. Toute calculatrice scientifique est autorisée.

EXERCICE 1

(5 points)

L'unité graphique est le centimètre.

A et B sont deux points du plan tels que AB = 6.

G₁ est le barycentre des points pondérés (A; 1) et (B; 3).

G₂ est le barycentre des points pondérés (A; 1) et (B; -3).

- 1. a) Construire les points G₁ et G₂.
 - b) Démontrer que l'ensemble (Γ) des points M du plan tels que $MA^2 9MB^2 = 0$ est le cercle de diamètre $[G_1G_2]$.
 - c) Construire l'ensemble (E) des points M du plan tels que Mes ($\widehat{MA}, \widehat{MB}$) = $\frac{\pi}{3}$.
- 2. Soit C l'image du point B par la rotation de centre A et d'angle $\frac{2\pi}{3}$;

D l'image du point B par l'homothétie de centre A et de rapport $\frac{2}{3}$;

S la similitude directe qui applique A sur B et C sur D.

- a) Construire les points C et D.
- b) Calculer le rapport de S.
- c) Justifier qu'une mesure de l'angle de S est $\frac{\pi}{3}$.
- 3. On note Ω le centre de S.
 - a) Démontrer que Ω appartient à (Γ) et à (E). Placer Ω .
 - b) Démontrer que Mes $(\widehat{AC}, \widehat{AD}) = \frac{-2\pi}{3}$.
 - c) En déduire que les points A, C, D et Ω appartiennent à un même cercle (\mathscr{C}). Construire (\mathscr{C}).

EXERCICE 2 (3 points)

On sait par expérience qu'un tireur professionnel touche sa cible avec la probabilité 0,7. Les tirs sont supposés indépendants.

Tous les résultats demandés seront donnés sous forme décimale exacte.

- 1. Le tireur effectue cinq tirs successifs. Calculer la probabilité pour qu'il touche sa cible :
 - a) cinq fois?
 - b) exactement deux fois?
 - c) au moins une fois?

Tournez la page S.V.P.

Visitez votre bibliothèque www.leSavoir.net pour plus de documents

- 2. Il tire n fois de suite $(n \ge 1)$. Démontrer que la probabilité pour qu'il touche la cible au moins une fois est égale à $1 (0,3)^n$.
- 3. Combien faut-il de tirs au minimum pour que la cible soit touchée au moins une fois avec une probabilité supérieure ou égale à 0,995 ?

PROBLEME (12 points)

On considère la fonction f de IR vers IR définie par :

$$f(x) = \frac{x}{1 + xe^{x}}.$$

On désigne par (\mathscr{C}) la courbe représentative de f dans le plan muni d'un repère orthogonal (0, I, J).

Partie I : Etude de f

- 1. Soit ψ la fonction dérivable sur IR et définie par : ψ (x) = 1 + xe^x.
 - a) Etudier les variations de ψ puis dresser son tableau de variation. (On ne demande pas de calculer les limites).
 - b) Démontrer que pour tout nombre réel x, $\psi(x) > 0$.
 - c) En déduire l'ensemble de définition de f.
- 2. Soit φ la fonction dérivable sur IR et définie par : $\varphi(x) = 1 x^2 e^x$.
 - a) Calculer les limites de φ en $-\infty$ et en $+\infty$.
 - b) Etudier les variations de φ puis dresser son tableau de variation.
 - c) Démontrer que l'équation $\phi(x) = 0$ admet une solution unique α comprise entre 0,7 et 0,71.
 - d) En déduire que :
 - $\forall x \in] -\infty; \alpha [, \varphi(x) > 0;$
 - $\forall x \in \alpha; +\infty [, \varphi(x) < 0.$
- 3. On admet que f est dérivable sur IR.
 - a) Démontrer que : $\forall x \in IR$, $f'(x) = \frac{\varphi(x)}{(1+xe^x)^2}$.
 - b) Calculer les limites de f en $-\infty$ et en $+\infty$.
 - c) Etudier les variations de f puis dresser son tableau de variation.
- 4. Soit (D) la droite d'équation y = x.
 - a) Démontrer que (D) est asymptote à (\mathscr{C}) en $-\infty$.
 - b) Etudier la position de (\mathscr{C}) par rapport à (D). (On pourra utiliser la question I.1.b).
 - c) Démontrer que la droite (D) est tangente à (C) au point d'abscisse 0.
 - d) Tracer (D) et (\mathscr{C}) dans la fenêtre définie par :

$$X_{min} = -4.5$$
 ; $X_{max} = 4$

$$Y_{min} = -5$$
; $Y_{max} = 0.4$.

On prendra : OI = 2cm ; OJ = 5cm et α = 0,7.

Partie II: Etude d'une suite

Pour tout entier naturel n, on pose : $I_n = \int_0^1 \frac{t^n}{1+te^t} dt$.

- 1. a) Sans calculer I₁, en donner une interprétation graphique.
 - b) Démontrer que la suite $(I_n)_{n\in \mathbb{I}N}$ est décroissante.
 - c) Démontrer que la suite $(I_n)_{n\in IN}$ converge.
- 2. a) Démontrer que :

$$\forall t \in [0; 1], \frac{1}{1+e} \le \frac{1}{1+te^t} \le 1.$$

(On pourra utiliser les variations de ψ sur [0;1]).

- b) En déduire que pour tout entier naturel n, $\frac{1}{(1+e)(n+1)} \le I_n \le \frac{1}{(n+1)}.$
- c) Déterminer la limite de $(I_n)_{n \in IN}$.