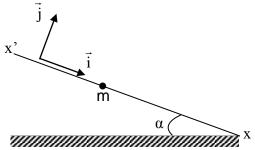
Direction des examens et concours\* Direction des examens et concours\* Direction des examens et concours\*

BACCALAUREAT SESSION 2006

Coefficient : 4 Durée : 3 h


# SCIENCES PHYSIQUES

SERIE: D

## **EXERCICE 1**

Un mobile de masse m, assimilable à un point matériel est lâché sans vitesse initiale sur une table inclinée d'un angle  $\alpha$  par rapport à l'horizontale (voir figure).

On suppose que le mobile est soumis au cours du mouvement à une force de frottement  $\vec{f}$  opposée à sa vitesse.



- 1.
- 1.1 Faire le bilan des forces agissant sur le mobile et les représenter sur un schéma.
- 1.2 Montrer que l'accélération du centre d'inertie G du mobile vaut  $a = g \sin \alpha \frac{f}{m}$ .
- 2. Un relevé des distances parcourues par le centre d'inertie du mobile au cours du temps à partir de l'instant initial t = 0 s, a donné le tableau suivant :

| t(s)               | 0,00 | 0,12 | 0,18 | 0,24 | 0,30 | 0,36 | 0,42 |
|--------------------|------|------|------|------|------|------|------|
| $d(10^{-2}m)$      | 0,0  | 1,1  | 2,5  | 4,4  | 6,9  | 10,0 | 13,6 |
| $t^2 (10^{-2}s^2)$ | 0,00 | 1,4  | 3,2  | 5,8  | 9,0  | 13,0 | 17,6 |

2.1 Représenter le graphique  $d = f(t^2)$ .

Echelles : en abscisses : 1 cm représente  $10^{-2}$  s<sup>2</sup>

en ordonnées : 1 cm représente 10<sup>-2</sup> m

- 2.2 Déterminer la pente ou le coefficient directeur du graphe.
- 2.3 L'équation horaire du mouvement est de la forme :  $d = \frac{1}{2} at^2$ . En déduire la valeur de

L'accélération du mouvement.

2.4 Calculer la valeur de la force de frottement qui agit sur le mobile dans ce cas.

Données :  $\alpha = 30^{\circ}$  ; m = 0.5 kg ; g = 10 m.s<sup>2</sup>.

### **EXERCICE 2**

On veut étudier un circuit R, L, C série soumis à une tension alternative sinusoïdale u(t) de fréquence N et de valeur efficace U.

On dispose pour cela:

- d'un résistor de résistance R
- d'une bobine d'inductance L et de résistance r
- d'un condensateur de capacité C
- d'un générateur basses fréquences (GBF) délivrant la tension alternative sinusoïdale u(t)
- de fils de connexions.
- 1. Faire un schéma du circuit R, L, C série.
- 2. On veut visualiser avec un oscilloscope bicourbe les variations de la tension u(t) aux bornes du circuit R, L, C (voie 2) et celles de l'intensité i(t) qui traverse le circuit . (voie 1) Indiquer sur le schéma de la question 1) le branchement de l'oscilloscope.
- On donne R = 40 Ω, L = 50 mH, r = 10 Ω (résistance de la bobine) et C = 10μF.
   La tension u(t) a pour valeur efficace 10 V et pour fréquence N = 100 Hz.
   Donner l'expression de l'impédance Z du circuit en fonction de r. R. L. (u) et
  - 3.1 Donner l'expression de l'impédance Z du circuit en fonction de r, R, L,  $\omega$  et C. 3.2

3.2.1 Montrer que l'impédance Z peut s'écrire 
$$Z=\sqrt{(R+r)^2+(2\pi NL-\frac{1}{2\pi NC})^2}$$
.

3.2.2 Calculer Z. On prendra pour cela 
$$2 \pi NL = 31,41 \Omega$$
;  $\frac{1}{2\pi NC} = 159,15 \Omega$ 

- 3.3 Déterminer la valeur efficace I de l'intensité du courant dans le circuit.
- 3.4 Déterminer la phase de la tension u(t) par rapport à l'intensité i(t). Le circuit est-il inductif ou capacitif ?
- 3.5 Représenter qualitativement la construction de Fresnel associé à ce circuit.

4.

- 4.1 Déterminer la valeur qu'il faudrait donner à la capacité du condensateur pour que l'on puisse observer le phénomène de résonance d'intensité, les autres dipôles du circuit restant inchangés, la fréquence de la tension u(t) aussi.
- 4.2 Déterminer la valeur de l'intensité efficace qui traverserait alors le circuit.

#### EXERCICE 3

Un groupe d'élève décide de déterminer la constance d'acidité du couple acide benzoïque/ion benzoate. On dose  $10~\text{cm}^3$  de solution d'acide benzoïque  $C_6H_5$ \_COOH de concentration inconnue par une solution d'hydroxyde de sodium (soude) de concentration  $10^{-1}\text{mol.L}^{-1}$ . Les variations du pH en fonction du volume V de soude versée sont :

| Vcm <sup>3</sup> | 0   | 1   | 2   | 3   | 5   | 6   | 8   | 9   | 9,5 | 9,8 | 9,9 | 10  | 10,1 | 11   | 12 | 14   | 16   |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|----|------|------|
| pН               | 2,6 | 3,2 | 3,6 | 3,8 | 4,2 | 4,4 | 4,8 | 5,2 | 5,5 | 5,9 | 6,2 | 8,5 | 10,7 | 11,7 | 12 | 12,4 | 12,7 |

1.

1.1 Tracer la courbe pH = f(V). On prendra pour échelle :

1 cm correspond à 1 cm<sup>3</sup> (en abscisse).

1cm correspond à 1 unité de pH (en ordonnée).

1.2 Déterminer graphiquement le point d'équivalence.

- 2.
- 2.1 Ecrire l'équation-bilan de la réaction.
- 2.2 Calculer la concentration de la solution d'acide benzoïque.
- 3. Déterminer graphiquement la valeur de la constante  $pK_a$  du couple  $C_6H_5$ -COOH /  $C_6H_5$ -COO $^-$ .

En déduire la constante d'acidité K<sub>a</sub> du couple.

- 4. On dispose de deux indicateurs colorés :
  - l'hélianthine (zone de virage 3,2 4,4)
  - la phénolphtaléine (zone de virage 8 10)

Reporter ces zones de virage sur le graphe pH = f(V).

Lequel de ces deux indicateurs colorés utiliseriez- vous pour effectuer ce dosage ? Justifier votre réponse.

## **EXERCICE 4**

Dans tout l'exercice on prendra comme masse molaire atomique pour :

- le carbone  $M(C) = 12 \text{ g.mol}^{-1}$
- l'hydrogène  $M(H) = 1 \text{ g.mol}^{-1}$
- l'oxygène  $M(O) = 16 \text{ g.mol}^{-1}$
- 1. On fait agir de l'acide carboxylique A de formule brute  $C_nH_{2n}O_2$  ( $n\in N^*$ ), sur un composé D (propan-2-ol (ou propanol-2)) en présence de catalyseurs adéquats. On obtient un composé dioxygéné E et de l'eau.
  - 1.1 Donner le nom de la réaction produite entre l'acide carboxylique et l'alcool.
  - 1.2 Donner les caractéristiques de cette réaction.
  - 1.3 Ecrire la formule semi-developpée du groupe fonctionnel de E.
- 2. La masse de 0,5 mole de cet acide carboxylique est de 30 g.
  - 2.1 Déterminer la valeur de l'entier naturel n.
  - 2.2 Donner les formules semi-developpées et les noms des produits A et E.
- 3. On réalise la chaîne de réactions ci-dessous avec les composés A et E définis ci-dessus. Les corps B et F sont des composés organiques.

$$A + PCl_5 \longrightarrow F$$

$$A \xrightarrow{P_4O_{10}} B$$

$$D + F \longrightarrow E \quad (1)$$

- 3.1 Sans écrire les équations, donner les formules semi-développées et les noms des corps B et F.
- 3.2 Donner le nom et les caractéristiques de la réaction marquée (1).