R. C. I. - M. E. N. Direction des Examens et Concours * Direction des Examens et Concours * R. C. I. - M. E. N.

BEPC

Coefficient: 3

SESSION 2012

Durée: 2 h

ZONE: III

MATHÉMATIQUES

Cette épreuve comporte deux pages numérotées 1/2 et 2/2.

EXERCICE 1

(3 points)

On donne le système d'équation du premier degré dans $\mathbb{R} \times \mathbb{R}$ suivant :

$$\begin{cases} x + 2y - 49 = 0 \\ 3x - y = 0 \end{cases}$$

- 1- Résous ce système d'équations.
- 2- Deux nombres entiers naturels sont tels que :
 - l'un est le tiers de l'autre
 - la somme de l'un et du double de l'autre est égale à 49.

On appellera a le plus petit nombre et b le plus grand nombre.

Trouve les nombres a et b.

EXERCICE 2 (3 points)

Le plan est muni d'un repère orthonormé (O, I, J). E est le point de coordonnées (-2; 3). (D) est la droite passant par le point E de coefficient directeur -2.

- 1- Place le point E.
- 2- Construis la droite (D).

EXERCICE 3 (3 points)

Le plan est muni d'un repère orthonormé (O; I; J).

On donne les points A(-1; 1); B(2; -3) et C(4; y).

- 1- Justifie que le vecteur \overrightarrow{AB} a pour coordonnées (3; -4).
- 2- Trouve le nombre réel y pour que les points A, B et C soient alignés.

EXERCICE 4 (3 points)

Une enquête est menée auprès des élèves d'une classe de 3^{ème} pour connaître le nombre de romans lus par chaque élève.

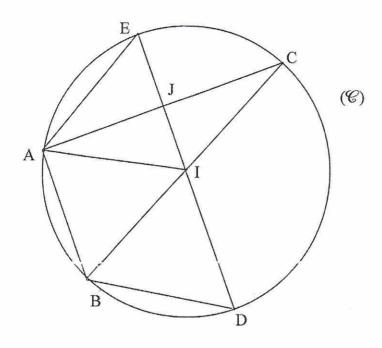
Les résultats obtenus sont regroupés dans le tableau ci-dessous.

Nombre de romans lus	0	1	2	3	4
Nombre d'élèves	24	19	12	3	2

- 1- Détermine le mode de cette série statistique.
- 2- Combien de romans, chaque élève a-t-il lu en moyenne ?

PROBLÈME (8 points)

L'unité de longueur est le centimètre.


B et C sont deux points du plan tels que BC = 6.

(%) est le cercle de diamètre [BC] et de centre I.

A et D sont deux points de (\mathscr{C}) tels que AB = 3 et DB = 3.

E est le point de (&) diamétralement opposé au point D.

J est le point d'intersection des droites (DE) et (AC).

- 1- a) Justifie que le triangle ABC est rectangle en A.
 - b) Justifie que AC = $3\sqrt{3}$.
- 2- a) Justifie que le quadrilatère ABDI est un losange.
 - b) Déduis-en que les droites (AB) et (DE) sont parallèles.
- 3- Calcule la longueur IJ.
- 4- Démontre que le quadrilatère ABDE est un trapèze isocèle.
- 5- Démontre que mes $\widehat{BED} = 30^{\circ}$.