Ministère de l'Education Nationale

COLLEGE FOUSSENI KONE

République de Côte d'Ivoire Union- Discipline –Travail

Année Scolaire: 2018-2019

Classe: *Tle A*₂ Durée: 2 h Coefficient: 2 Prof: M. KABY

09 963 670 /75 259 207

MATHEMATIQUES

SERIE: A₂

Cette épreuve comporte (02) pages numérotés 1/2 et 2/2

EXERCICE N°1

Dans cet exercice aucune justification n'est demandée. Ecris sur ta copie le numéro de l'affirmation suivi de Vrai lorsque l'affirmation est vraie ou de Faux lorsque l'affirmation est fausse. Exemple : 1- Vrai

N°	Affirmations				
	La limite d'une fonction rationnelle en $+\infty$ est la limite en $+\infty$ du quotient des termes de				
1	plus haut degré du numérateur st du dénominateur.				
	(D) est une droite d'équation $y = ax + b$ ($a \ne 0$) et h est une fonction rationnelle. Si				
2	$\lim_{x \to +\infty} (h(x) - (ax + b)) = 0 \text{ alors la droite (D) est asymptote oblique à la courbe}$				
	représentative de $h en + \infty$				
3	$\lim_{x \to -\infty} f(x) = b$ alors La droite $y = b$ est une asymptote horizontale à $(Cf)en + \infty$				
	Soit (D) l'asymptote d'équation $y = ax + b$ à la courbe représentative (C) d'une fonction				
4	f et I un intervalle de \mathbb{R} .				
	Si $f(x) - (ax + b) > 0$ alors (C) est au-dessus de (D)				

EXERCICE N°2

Dans cet exercice aucune justification n'est demandée. Pour chaque ligne du tableau cidessous trois réponses A, B et C sont proposées dont une seule est juste pour chaque énoncé. Ecris sur ta copie le numéro de la ligne suivi de la lettre correspondant à la bonne réponse juste. Exemple : 1-C

		Réponses		
N°	Énoncés	A	В	C
1	$\lim_{x \to 2} \frac{1}{x - 2} \text{ est égale à :}$	-∞	0	+∞
2	La dérivée de la fonction $x \to 3x^3 + 4x - 1$ est la fonction :	$x \rightarrow 3x + 4$	$x \to 9x^2 + 4$	$x \to 6x^2 + 4$
3	Le signe de la dérivée de la fonction $x \rightarrow x^2 - 4x + 1$ est :	Est négatif sur]-∞, 2[Est positif sur $]-\infty$, 2[Positif sur R
4	$\lim_{x \to +\infty} (2x^2 - 7x + 6) \text{ est égale à :}$	-∞	+∞	6

www.leSavoir.net

EXERCICE N°3

On considère la fonction polynôme f définie par: $f(x) = x^3 - x^2 - 4x + 4$.

- 1-a) Calculer f(2)
 - b) Vérifier que : $f(x) = (x 2)(x^2 + x 2)$.
- 2-a) Justifier que les solutions de l'équation (E_1) : f(x) = 0 sont : -2; 1 et 2.
 - b) Résoudre dans \mathbb{R} l'inéquation (I_1) : f(x) < 0.

EXERCICE N°4

On considère la fonction dérivable sur IR-{2} et définir par : $f(x) = \frac{x^2 + x - 2}{x - 2}$

Soit (C) la courbe représentative de f dans un repère orthonormé (O ; I ; J). L'unité graphique est le centimètre.

- 1°) Déterminer que pour tout nombre réel x différent de 2, on a : $f(x) = x + 3 + \frac{4}{x-2}$
- 2°) a- Déterminer que pur tout nombre réel x différent de 2, on a : $f'(x) = \frac{x(x-4)}{(x-2)^2}$
 - b- Déterminer le signe de f'(x) suivant les valeurs de x.
 - c- Déterminer les variations de f
 - d-Déterminer les limites de f en $-\infty$ ou $+\infty$, à gauche et à droite en 2
 - e- calculer f(0) et f(4) puis dresser le tableau de variation de f
- 3°) a- Démontrer que la droite (Δ) d'équation x = 2 est asymptote verticale
 - b-Démontrer que la droite (D) d'équation y = x + 3 est asymptote oblique à (Cf)
 - c- Déterminer les positions relatives de (C) et (D).
- 4°) Tracer (Δ), (D) puis construire la courbe (C).